4 xl;,h'_“
“‘/i!‘ “*5. p\ L 'i T N ) Sop 12
\\:‘LL"/ ‘The Institute of Technological Sciences, Wuhan University

Robust Robotic Grasping

- From Hundreds to Millions

Miao LI
Wuhan University

2023.10.1 1



T Grasping is very useful for many industry
applications

Automotive Warehouse Machining
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 How about Millions of Objects?
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T What is the new challenge?

4 Environment Lighting, MES, HIS, WMS .......

>

Position, Orientation
Random, cluttered .... (object can be mixed)

Variety
1-10-100-1000 — (1)
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&= \What is the new challenge?

\f \.‘ 4 Environment  Lighting, MES, HIS, WMS ......

Position, Orientation
Random, cluttered ....

Variety
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&==  pipeline for the new challenge
Grasping Datasets Dat as et
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Data-Driven Grasp Planning Neural Network
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W= What will happen if a grasp falls?

Objects Grasp
Retrain the model

Grasping Dataset Quality Improvement

Existing Dataset

?
\\

Bad
Grasp

New

Objects
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What will happen if a grasp fails?

Design new algorithm

Existing Dataset

New
Objects
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Human in the loop

Existing Dataset
: Bad
Grasp

New
Objects
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&== \What wil happen If a grasp fails?

Re-design the objects

LN
New : Bad

&




&= What will happen if a grasp fails?

Existing Dataset

New
Objects

Can we get arobust (and better) pre-
trained planning algorithm before failures?
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Nb. of Objects
107
106
10°
104
103
102

Sim Real

Model-based+ small data learning
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Ween Recap of the grasp planning (2)

Nb. of Objects
107

106
5
< Aot 10 Imgrove the perdormiance of 1obots that pick, 3oet, 30w ok products I 1 O
warehauses, Armazan has gublichy retease] i lrgest datareet 6F rmages cagtured in an
Industsial product-saring seting. Wheve the lrgest proviogs dataset of dusta
Images fastured on the ardar of 100 objects. the Amaaon (ataset, cafied ARMBah, 1 04
Features enore than 190,000 ctijects, As sauch, It could be used 1o tran prck and place”

2 months, 800K grasps
14 robots

sbots that are better uble 19 generalize (0 nevs produets and contests
./ ) :

103
102
101

190000 objects  sim Real

Big data in real world .



Recap of the grasp planning (3)

Nb. of Objects

10/
Sim2Real

108
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Robust Parallel-Jaw Grasps Grasp Image Dataset (6.7 Million)
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Sim Real

Big data in simulation + Sim2Real
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T Shape generation- Previous works

g | )
3 50 o
= Original Adversarial +
Z 40 '
2
= 30
= > =
i+ aAs
S 201 >
3 5
g 10 O
E E
Z 01 , ) =
0 20 40 60 %
[teration number 3
3
S

Complex

O.riginal Analytical Algon‘(hm CEM + GAN
Adversarial Grasp Object EGAD (Morrison et. Al 2020)
(Wang et. Al 2019)
A class of “adversarial grasp objects that are physically The objects in EGAD are geometrically diverse,
in terms of a specified robot grasping policy. shapes and from easy to difficult to grasp
18
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AE-Critic Network

,"@fﬁia

Encoder

Mix Feature

Vector Decoder
o T \.
’ G E ' 3D Convolution 3D ConvTranspose i
z 1 - ! i
E 3DBatchNorm+Relu [l Full Connection E
Linear E _ :
Encoder Interpolate \ ’ Feature Vector a Interpolate Weight ’;

® Deep shape generation for robust grasping, Sci-China, 2023 (under review)
® Improving robotic grasping ability through deep shape generation, 2022

19



Al

#==_  Object shape encoding

* Encode shapes into
feature vectors

Encoder

Mix Feature

Vector Critic
' ' T PR o= A )
’ 0 1 i . 3D Convolution 3D ConvTranspose |
. _a H H
i 3DBatchNorm+Relu [l Full Connection E
Linear i . i
Encoder Interpolate |‘\ ’ Feature Vector Q Interpolate Weight J

-------------------------------------------------
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A== Object shape encoding

* Encode shapes into
feature vectors

Encoder

* Interpolate feature
vectors

Mix Feature
Vector

Critic

------------------------------------------------
’

Decoder

. 3D Convolution 3D ConvTranspose
3DBatchNorm+Relu . Full Connection

Linear
Interpolate

o
-

’ Feature Vector O Interpolate Weight

-------------------------------------------------

Encoder

21
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P Sr ° .
#&==_  Object shape encoding

* Encode shapes into a A
feature vectors

* Interpolate feature
vectors

Mix Feature
Vector

Critic

-------------------------------------------------

Decoder

. 3D Convolution 3D ConvTranspose

. 3DBatchNorm+Relu Full Connection
 Decode mix feature -

vector and generate
new shapes

Linear
Interpolate

o
-

’ Feature Vector O Interpolate Weight
\ /

-------------------------------------------------

Encoder

22
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Object shape encoding

Mix Feature
Vector

Linear
Encoder Interpolate X ’Feature Vector

--------------------

. 3D Convolution 3D ConvTranspose
3DBatchNorm+Relu . Full Connection

Critic

-------------------------------------------------

a Interpolate Weight

-----------------------------

Critic is used to predict the interpolate weights and regularize the

generated shapes to be more realistic
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Shape Distribution

Object shape distribution
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Objects

300

Shape generation

Rareness

Rl=1=0 Intelligent Robots and Systems

Rare + Difficult to grasp
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Compute object scores
through outlier detection
and grasp-quality criteria

Group high-scoring data
as generation pair

Generate new objects by
AE-Critic network
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Shape generation

Original Dataset

Augmented Dataset
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Shape generation

Original Data Distribution

Augmented Data Distribution

duplicate shapes
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low graspness shapes

high graspness shapes
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QO Original Data
[] Generated from rare shape
*Generated from high graspness shape
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rare shapes
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Grasp Success Rate
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Grasp Success Rate Comparison between
Before and After Augmentation (Average 68% : 86%)

Grasp Trials(Success/All)
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Experiments Results

After Before After

Before

After
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Nb. of Objects
107
106
® Sim2Real 105

104
103
102

Shape Generation

1t

Sim

Big data in simulation + Sim2Real

Recap of the grasp planning (3)

Real

30



N7z

/@ ocroser1-5,2023
|EEE/RS) International Conference on

| . P ARl ASHE S
@POO09CONIOCOCOOO ;,\;,L“E.Lifi‘l-u\.
- @ ©° fssefhaMmmakhl
TP s '] hRRASRARST R
) o
- Tl O ~*"K-“_.-\r-'}'d.5';ﬂ_-!;
BACRLLL LAY e g £
1 @0 RELARRLEYE
Household Factory Simulation
Real-world Dataset: Synthetic Dataset:
Labeled training data from real-world scenarios Generating Labeled Data from Simulation
Drawbacks: expensive, gap between different scenarios Drawbacks: simulation-to-reality gap

How to transfer the learned grasping ability to new domains?
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Sim2Real (Joli

nt Work with Feil Chen, Yasemin Bekiroglu)

Il B: Output Space Adversarial Learning

’ 4
I Adaptor

Data from
New Domain

o

Data from

g Domain

P,
Grasp
? Synthesis

Domain Discrimination
in Output Space

Adversarial Learni

Trainir Discriminator | —»

7
7
7
i
-l

cccccccccccccc
Pre-trained
Model Frozen

|

N9

adapted
data \‘

Output Space

v

belongs to
Adapted Domain

I

Il C: Grasp Feature Contrastive Learning

Contrastive Learning

Grasp Adaptation

Output Space Adversarial Learning What to transfer?

and

GraspAda: Deep Grasp Adaptation through Domain Transfer,

Grasp Feature Contrastive Learning How to transfer?

ICRA 2023
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Associate Disassociate

Jouf|—

Original Adapted
Grasp Feature Distribution
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RGB
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-------- - | yreyropummepmp——"-

Patchwise Grasp Feature Contrastive Learning

A feature-level contrastive learning scheme is developed to enforce the grasp
relative feature consistency during adaptation.
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GraspAda

Overall grasping success rate: 40% Overall grasping success rate: 80%
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Successful Rate of 10 Grasp Attempts on Each Objects & Without DA & With DA

10/10 1V10 10710 110
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Il v e n 3
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Without Data Adaptation
Successful Rate: 4/10

Without Data Adaptation
(strong background noise)
Successful Rate: 0/10

With Data Adaptation
Successful Rate: 10/10

With Data Adaptation
(strong background noise)
Successful Rate: 10/10
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- C=C RN general pipeline of robotic grasping

.......................................................................................

Object Point Cloud

— RO

Single Object
Mask

Obj Point
Cloud

' Grasping Points . Grasp Post-} Grasp : )
. Selection | . process . Planning . Preprocess |
.| Orientation i Plane ggmgling
Stack Sor’tlng _ Cylinder _ 5 . .
i - |Filtering
Collision | : Distance | | N
Height sdrtiing lcom | | Segmentation
------------------------------------------------------------------- 37
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aGa3 IEEE/RS) Internationat Conference on

I=i=1=F| Intelligent Robots and Systems prediction ground truth

Training
All the algorithms from DL is data from

probabilistic (deterministic required in internet
production )

A large number of well-labelled data is
required (data is expensive in

production) Limited

testing data Deep Learning Nice results

90% success rate could be a nice

paper (99% is not enough)

Ignore the corner cases (Corner cases

must be taken into account, e.g self- Example of scene segmentation:

driving) Is there any guarantee that we can
1ms in prediction time is not perceived segment the image correctly all
the time? ' Production

(1 ms could make a huge difference)

Low (zero) stake vs high stake

38




b | T | .
o -
@w\ﬁw - = Y
3 3 . uﬁ, i
e T T —= A M
- > e , . TS . m.
v J \ - S i .

Grasping in the real world
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IEEE/RSI International Conference on
Intelligent Robots and Systems

OCTOBER 1-5, 2023
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aGa3 IEEE/RS) International Conference on
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Transfer grasping to real world

v' Data is expensive v’ 99.99% is still far away! (4s per grasp)

X A general pipeline of robotic grasping
v' Ims is important -
w— RO mmp U0y CRe
E= g B ]
v’ System is important h- L ;;,. =
o] ||| I e

1. Robustness — Grasping is solved without this constraint

2. Speed — What makes grasping useful in real life

3. Adaptability — What makes grasping intelligent
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The Insti of Technological Sci s, Wuhan Uni

Thanks for your attention!

Email: miao.li@whu.edu.cn
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