Robotics

Miao Li

No S

Fall 2023, Wuhan University WeChat: <u>15527576906</u> Email: limiao712@gmail.com

2023-11-6

Goal for this course

- Design: soft hand design x1
- Perception: vision, point cloud, tactile, force/torque x1
- Planning: sampling-based, optimization-based, learning-based x3
- Control: feedback, multi-modal x2
- Learning: imitation learning, RL x2
- Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)
- How to get a robot moving!

Today agenda

- Paper reading (~30 mins)
- Why imitation learning (IL) (~5)
- Key ingredients of IL (~5)
- Data collection (~5)
- Learning algorithms (~20)
- Limits of IL (~5)
- Examples and applications (~20)
 - Motion
 - Hand IK
 - Force-relevant task
 - Multi-modal task

Special-Purpose Robot Automation

custom-built robots

human expert programming

special-purpose behaviors

General-Purpose Robot Autonomy

Robot Learning

general-purpose behaviors

Motivation

How can we learn optimal controllers to perform a task from data?

Billard A., Calinon S., Dillmann R., Schaal S. (2008) Robot Programming by Demonstration. In: Siciliano B., Khatib O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_60

Motivation

How can we learn optimal controllers to perform a task from data?

- Use data-driven approaches to learn optimal controllers
- How do we gather data for learning?

Billard A., Calinon S., Dillmann R., Schaal S. (2008) Robot Programming by Demonstration. In: Siciliano B., Khatib O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_60

Learning is critical for getting robots to work in the real world.

object variation

environment uncertainty

adaptation

https://www.cs.utexas.edu/~yukez/cs391r_fall2020/slides/lecture_intro.pdf

Robots should have the ability to learn skills and adapt these skills to new scenarios.

https://sites.google.com/view/icml2018-imitation-learning/

Imitation is a crucial aspect of skill development, because it allows us to learn new things quickly and efficiently by watching those around us. Most children learn everything from gross motor movements, to speech, to interactive play skills by watching parents, caregivers, siblings, and peers perform these behaviors.

https://www.mayinstitute.org/news/acl/asd-and-dd-child-focused/what-is-imitation-and-why-is-it-important/#:~:text=Imitation%20is%20a%20crucial%20aspect,and%20peers%20perform%20these%20behaviors.

Imitation Learning in a Nutshell

Given: demonstrations or demonstrator **Goal:** train a policy to mimic demonstrations

Imitation learning

- $\vec{x} = \vec{x}'$ Same Object, same target location
- $\vec{d} = \vec{d}'$ Same direction of motion
- $\vec{v} = \vec{v}'$ Same speed, same force
- $\vec{\theta} = \vec{\theta}'$ Same posture

Imitation learning

No solutions (smaller range of motion)

 \rightarrow Find the closest solution according to a metric

How to Imitate? The correspondence problem

Considerations

Learning human skills through LFD requires the following questions:

- What/Who to imitate?
- How to imitate?
- When to imitate?

Demonstrator

Demonstrator

Demonstrator

Teleoperation

Teleoperation Interfaces

- Graphical user interface/Tablet
- Joysticks
- More complex devices (e.g., exoskeleton)

Demonstrator

https://www.youtube.com/channel/UCqnvGUfdlr94mddDQamEBGA

Demonstrator

Demonstrator

CMU清华MIT引爆全球首个Agent无限流,机器人「007」加班自学 停不下来! 具身智能被革命

0660m 新智元 新智元 2023-11-04 14:27 Posted on 北京

新智元报道

One click. Any robot. Endless Tasks.

Infinite data.

Computer Science > Robotics

(Submitted on 2 Nov 2023)

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Zackory Erickson, David Held, Chuang Gan

Demonstrator

Agile Autonomy: Learning High-Speed Flight in the Wild

Antonio Loquercio*, Elia Kaufmann*, René Ranftl, Matthias Müller, Vladlen Koltun, Davide Scaramuzza

*these authors contributed equally

Demonstrator

Demonstrator

;

Demonstrator

Salt Bae 7.2M views

:

Data collection

Tosk discribution

Data collection

Imitation learning is very good at in-distribution tasks, but not so good at outdistribution tasks.


```
Data collection of exp design
```

- Task variations
- Environments
- Demonstrator variance
- Invariant relation

We need to design the EXps according to these bulkes.

• Recall the Gaussian distribution:

Multivariate Gaussian distribution

Univariate Gaussian distribution:

$$\mathcal{N}(\mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) \text{ Radial basis function (RBF)}$$

$$x \in \mathbb{R} \quad \text{Datapoint}$$

$$\mu \in \mathbb{R} \quad \text{Center (or mean)}$$

$$\sigma^2 \in \mathbb{R} \quad \text{Variance} \text{ Parameters } \{\mu, \sigma^2\}$$

Multivariate Gaussian distribution:

$$\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{D}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$
$$\boldsymbol{x} \in \mathbb{R}^{D} \qquad \text{Datapoint}$$
$$\boldsymbol{\mu} \in \mathbb{R}^{D} \qquad \text{Center (or mean)}$$
$$\boldsymbol{\Sigma} \in \mathbb{R}^{D \times D} \qquad \text{Covariance matrix} \qquad \text{Parameters } \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$$

https://calinon.ch/misc/EE613/EE613-nonlinearRegression.pdf

Properties of Gaussian distributions

Linear combination:

$$\mathcal{N}(\boldsymbol{\mu}^{\boldsymbol{L}}, \boldsymbol{\Sigma}^{\boldsymbol{L}}) \sim \frac{1}{2} \mathcal{N}(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}^{(1)}) + \frac{1}{2} \mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}^{(2)})$$

Product of Gaussians:

$$c \mathcal{N}(\boldsymbol{\mu}^{P}, \boldsymbol{\Sigma}^{P}) \sim \mathcal{N}(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}^{(1)}) \cdot \mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}^{(2)})$$

Conditional probability:

 $\mathcal{N}(\boldsymbol{\mu}^{C}, \boldsymbol{\Sigma}^{C}) \sim \mathcal{P}(\boldsymbol{x}_{2} | \boldsymbol{x}_{1})$

Product of Gaussians

The product of two Gaussian distributions

$$\mathcal{N}(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}^{(1)})$$
 and $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}^{(2)})$ is defined by
 $c \ \mathcal{N}(\boldsymbol{\mu}^{P}, \boldsymbol{\Sigma}^{P}) = \mathcal{N}(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}^{(1)}) \cdot \mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}^{(2)}),$
with $c = \mathcal{N}(\boldsymbol{\mu}^{(1)} | \boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma}^{(1)} + \boldsymbol{\Sigma}^{(2)}),$
 $\boldsymbol{\Sigma}^{P} = \left(\boldsymbol{\Sigma}^{(1)^{-1}} + \boldsymbol{\Sigma}^{(2)^{-1}}\right)^{-1},$
 $\boldsymbol{\mu}^{P} = \boldsymbol{\Sigma}^{P} \left(\boldsymbol{\Sigma}^{(1)^{-1}} \boldsymbol{\mu}^{(1)} + \boldsymbol{\Sigma}^{(2)^{-1}} \boldsymbol{\mu}^{(2)}\right).$

Conditional probability

Let
$$\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 be defined by
 $\boldsymbol{x} = \begin{pmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{pmatrix}, \ \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \ \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}.$
The conditional probability $\mathcal{P}(\boldsymbol{x}_2 | \boldsymbol{x}_1)$ is defined by
 $\mathcal{P}(\boldsymbol{x}_2 | \boldsymbol{x}_1) \sim \mathcal{N}(\boldsymbol{\mu}^C, \boldsymbol{\Sigma}^C),$
with
 $\boldsymbol{\mu}^C = \boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_{21}(\boldsymbol{\Sigma}_{11})^{-1}(\boldsymbol{x}_1 - \boldsymbol{\mu}_1),$
 $\boldsymbol{\Sigma}^C = \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21}(\boldsymbol{\Sigma}_{11})^{-1}\boldsymbol{\Sigma}_{12}.$

The GMM assumption

- There are k components. The i' th component is called ω_i
- Component ω_i has an associated mean vector μ_i

The GMM assumption

- There are k components. The i' th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix σ²I
- Assume that each datapoint is generated according to the following recipe:

Learning algorithms

The GMM assumption

- There are k components. The
 i' th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix σ²I
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random: choose component *i* with probability $P(\omega_i)$.

Learning algorithms The GMM assumption

- There are k components. The
 i' th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix σ²I
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random: choose component *i* with probability $P(\omega_i)$.
- 2. Datapoint ~ $N(\mu_{ii} \sigma^2 I)$

Learning algorithms

The General GMM assumption

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random: choose component i with probability $P(\omega_i)$.
- 2. Datapoint ~ N(μ_i , Σ_i)

Learning algorithms

Mixture Models

- Formally a Mixture Model is the weighted sum of a number of pdfs where the weights are determined by a distribution π

$$p(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x) + \ldots + \pi_k f_k(x)$$

where $\sum_{i=0}^k \pi_i = 1$
$$p(x) = \sum_{i=0}^k \pi_i f_i(x)$$

Learning algorithms Gaussian Mixture Models

- GMM: the weighted sum of a number of Gaussians where the weights are determined by a distribution $\ \pi$

$$p(x) = \pi_0 N(x|\mu_0, \Sigma_0) + \pi_1 N(x|\mu_1, \Sigma_1) + \ldots + \pi_k N(x|\mu_k, \Sigma_k)$$

where $\sum_{i=0}^k \pi_i = 1$
$$p(x) = \sum_{i=0}^k \pi_i N(x|\mu_k, \Sigma_k)$$

 $p_i(t)$ is shorthand for estimate of $P(\omega_i)$ on t' th iteration

Just evaluate a

Gaussian at xk

Learning algorithms (video)

Gaussian Mixture Models

How to Implement?

Leverage the power of learning techniques and nonlinear control

Learning algorithms

LWR

C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for control. Artificial Intelligence Review, 11(1-5):75–113, 1997

W.S. Cleveland. Robust locally weighted regression and smoothing scatterplots. American Statistical Association 74(368):829–836, 1979

GMR

Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete data via an EM approach. In Advances in Neural Information Processing Systems (NIPS), volume 6, pages 120–127, 1994

S. Calinon. Mixture models for the analysis, edition, and synthesis of continuous time series. Mixture Models and Applications, Springer, 2019

GPR

C.K.I. Williams and C.E. Rasmussen. Gaussian processes for regression. In Advances in Neural Information Processing Systems (NIPS), pages 514–520, 1996

C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine learning. MIT Press, Cambridge, MA, USA, 2006

S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain. Gaussian processes for time-series modelling. Philosophical Trans. of the Royal Society A, 371(1984):1–25, 2012

GPIS

O. Williams and A. Fitzgibbon. Gaussian Process Implicit Surfaces. In Gaussian Processes in Practice, 2007

Limitation of traditional learning algorithms

- Limited training data
- Can only handle vector state
- Typically assume a Gaussian distribution
- Assume continuous system
 - Difficult to model hybrid system
- Can not deal with multi-modal control
- Good at modeling motion primitive or low-level physical skill

Learning algorithms

eorp design.

Lardwore Sensot ptotol. intention interface

data allection. joint arges pos (ori force Coctile-vision

Leatning Kly GMM GP SVM Deep learing ILM RT-2.

Problem 1: Correspondence Problem

Even when the robot looks more like the human, its body does not have the same range and dynamics of motion.

Problem 1: Correspondence Problem

Robots do not perceive things like we do.

Sonars, infrared sensors, lasers are common on robots and easier to process than information from cameras.

Problem 1: Correspondence Problem

Problem 2: Learning is Data-Sensitive

Data is robot-dependent

Problem 2: Learning is Data-Sensitive

Data is environment-dependent

Model transferred at AIST/JRL

Problem 2: Learning is Data-Sensitive

Need Transfer Learning methods

Model Learned at EPFL

Model transferred at AIST/JRL

Problem 3: Variability in Task Definition

- Question: What does it mean to perform a task?
- Multiple ways to accomplish a task:
 - multiple motions

Problem 3: Variability in Task Definition

- Question: What does it mean to perform a task?
- Multiple ways to accomplish a task:
 - multiple motions
 - multiple tools

Current/Future Research Directions: Learn from Small Datasets

- Learn from small datasets: Reduce the number of demonstrations needed
- Combine heterogeneous data types
- Improve teaching interactions

One-shot learning

Today agenda

- Paper reading (~30 mins)
- Why imitation learning (IL) (~5)
- Key ingredients of IL (~5)
- Data collection (~5)
- Learning algorithms (~20)
- Limits of IL (~5)
- Examples and applications (~20)
 - Motion
 - Hand IK
 - Force-relevant task
 - Multi-modal task

Modelling Hitting Task using Dynamical Systems-Based Control

- Collect Demonstrations of hitting a golf ball using kinesthetic teaching
- Collect the recorded robot states and velocity at each time step
- We could generate a dynamical system representing this motion:
 x
 x f(x)

Modelling Hitting Task using Dynamical Systems-Based Control

Modelling Hitting Task using Dynamical Systems-Based Control

- We could generate a dynamical system representing this motion: $\dot{x} = f(x)$
- Guarantees asymptotically reaching and stabilizing at attractor: $\lim_{\{t \to \infty\}} x = x^*$, where x^* : Ball Location

Teaching Compliant Control: What happens when stiffness not considered?

Too stiff: Liquid spills from jerking

Too compliant: Liquid spills from glass

How can we teach robot when to increase and decrease compliance?

Teaching Compliant Control: Adding Compliance

Teaching *decrease* in stiffness by wiggling the robot

Probabilistic Hand Inverse Kinematics

-2 eig₁(S)

1.5

0.5

-0.5

-1.5

eig₂(S)

Grasp Experience

Learn Density Function

Stability Estimation

Learning of Grasp Adaptation through Experience and Tactile Sensing

Miao Li, Yasemin Bekiroglu, Danica Kragic and Aude Billard

IROS 2014

Experimental Results

Fan Blade Cleaning

(a) Robot setup

(b) Human demonstration

(c) Kinesthetic teaching

M. Li et al. "Learning task manifolds for constrained object manipulation", Autonomous Robots 2016

Polishing

Learning force-dominant skills from human demonstration

Xiao Gao, Jie Ling, Xiaohui Xiao and Miao Li

Xiao Gao

This video is submitted to IROS 2018

X. Gao et al. "Learning Force-dominant Skills from Human Demonstration", Submitted to IROS 2018
Assembly

Fig. 12. Experiment setup and demonstration phase by collaborative insertions. **a**: The three pegs and six holes. **b**: The peg was moving towards the hole. **c**: Searching the hole by an Archimedean spiral movement. **d**: Collaborative insertions.

Learning the moving strategy of probe

Collect the probe motion data

Keep the contact point between the probe and the human body unchanged when collecting data.

Posture of probe, quaternion qw_t, qx_t, qy_t, qz_t

Collect data from 5 persons

Person	1	2	3	4	5
Quantity of data	776	1348	596	919	1552

robollo ultrasound system has become an amarging topic recently.

Learning of Robotic Ultrasound Scanning Skills Through Experience and Guided Exploration

TRO 2023 (Under Review)

Goal for this course

- Design: soft hand design x1
- Perception: vision, point cloud, tactile, force/torque x1
- Planning: sampling-based, optimization-based, learning-based x3
- Control: feedback, multi-modal x2
- Learning: imitation learning, RL x2
- Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)
- How to get a robot moving!

Robotics today

Learning Object-level Impedance Control for Robust Grasping and Dexterous Manipulation

Miao Li*, Hang Yin*, Kenji Tahara+, and Aude Billard*

*Learning Algorithms and Systems Laboratory (LASA) Ecole Polytechnique Federale de Lausanne (EPFL) +Faculty of Engineering, Kyushu University, Japan

ICRA-2014, HongKong

81

Overview

"Learning Object-level Impedance Control for Robust Grasping and Dexterous Manipulation"

Motivation

Model — Object-level Impedance Controller

Approach — Learning from Human Demonstration

Experiments and implementation

Conclusion

Motivation

How to specify the proper impedance for a given task?

Our Answer:

The desired object-level impedance can be learnt from

human demonstration

Motivation

The desired interactions are represented in the object frame

Object Dynamics:

$$\mathbf{f} + \mathbf{f}_{env} = m\mathbf{\ddot{x}}$$

Desired Behavior:

$$\mathbf{f}_{env} = M\mathbf{\ddot{x}} + D(\mathbf{\dot{x}} - \mathbf{\dot{x}}_d) + K(\mathbf{x} - \mathbf{x}_d)$$

$$\mathbf{f} = mM^{-1}D(\mathbf{\dot{x}}_d - \mathbf{\dot{x}}) + mM^{-1}K(\mathbf{x}_d - \mathbf{x}) + (mM^{-1} - I)\mathbf{f}_{env}$$

$$\mathbf{f} = D(\mathbf{\dot{x}}_d - \mathbf{\dot{x}}) + K(\mathbf{x}_d - \mathbf{x})$$

Relative Stiffness: the object stiffness in one direction is inversely proportional to the variance of displacement under perturbation in the corresponding direction

$$K = \alpha \{ \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{i} - \mathbf{x}_{r}) (\mathbf{x}^{i} - \mathbf{x}_{r})^{T} \}^{-1}$$

Relative Rotational Stiffness

Robust Grasping: Workspace

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$K = \alpha \{ \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^i - \mathbf{x}_r) (\mathbf{x}^i - \mathbf{x}_r)^T \}^{-1}$$

Human demonstration

Optimization:

$$\min_{K,\mathbf{x}_{r}} \sum_{i=1}^{N_{t}} \|\mathbf{f}_{f,o}(i) - \{K(\mathbf{x}_{r} - \mathbf{x}(i))\}\|^{2}$$
s.t.

$$K_{i,j} \leq k_{lim}, \quad i = 1...6, j = 1...6;$$

$$\|\mathbf{x}_{r} - \mathbf{x}(i)\| \leq \Delta x_{lim}, \quad i = 1...N_{t};$$

$$\|\mathbf{\dot{x}}_{r} - \mathbf{\dot{x}}(i)\| \leq \Delta \dot{x}_{lim}, \quad i = 1...N_{t};$$

Stiffness Learning: the object force and motion are recorded from human demonstration, and used to learn an impedance model.

Conclusion

- We introduced an object-level impedance learning approach for robust grasping and dexterous manipulation.
- We modeled the boundary of the workspace using a Gaussian Mixture Model.
- This learning approach could be applied in multiple ways, such as grasp adaptation (IROS 2014 paper), grasp synthesis and tool use tasks.

Miao Li, Yasemin Bekiroglu, Danica Kragic and Aude Billard, "Learning of Grasp Adaptation through Experience and Tactile Sensing", IROS 2014

