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Goal for this course

* Design: soft hand design x1

 Perception: vision, point cloud, tactile, force/torque x1

* Planning: sampling-based, optimization-based, learning-based x3
* Control: feedback, multi-modal x2

* Learning: imitation learning, RL x2

« Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)

 How to get a robot moving!



Today agenda

Paper reading (~30 mins)

 Why imitation learning (IL) (~5)

Key ingredients of IL (~5)
Data collection (~5)
_earning algorithms (~20)
_imits of IL (~5)

Examples and applications (~20)
* Motion
« Hand IK
* Force-relevant task
* Multi-modal task




Why imitation learning?

Special-Purpose Robot Automation

custom-built human expert special-purpose
robots programming behaviors

General-Purpose Robot Autonomy

Robot Learning
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general-purpose general-purpose

robots behaviors



Why imitation learning?

Motivation

How can we learn optimal controllers to perform a task from data?

Billard A., Calinon S., Dillmann R., Schaal S. (2008) Robot Programming by Demonstration. In: Siciliano B., Khatib O. (eds) Springer Handbook of Robotics.
E P F L Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_60



Why imitation learning?

Motivation

How can we learn optimal controllers to perform a task from data?

» Use data-driven approaches to learn optimal controllers
* How do we gather data for learning? .

Billard A., Calinon S., Dillmann R., Schaal S. (2008) Robot Programming by Demonstration. In: Siciliano B., Khatib O. (eds) Springer Handbook of Robotics.
E PF L Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_60



object variation environment uncertainty adaptation

https://www.cs.utexas.edu/~yukez/cs391r_fall2020/slides/lecture_intro.pdf



Why imitation learning?

Robots should have the ability to learn skills
and adapt these skills to new scenarios.

https://sites.google.com/view/icml|2018-imitation-learning/



Why imitation learning?

Imitation is a crucial aspect of skill development, because it
allows us to learn new things quickly and efficiently by watching
those around us. Most children learn everything from gross motor
movements, to speech, to interactive play skills by watching
parents, caregivers, siblings, and peers perform these behaviors.
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https://www.mayinstitute.org/news/acl/asd-and-dd-child-focused/what-is-imitation-and-why-is-it-
Important/#:~:text=Imitation%20is%20a%20crucial%20aspect,and%20peers%20perform%20these®%20behaviors.



Why imitation learning?
Imitation Learning in a Nutshell

Given: demonstrations or demonstrator

Goal: train a policy to mimic demonstrations

Expert Demonstrations State/Action Pairs Learning
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Imitation learning

X =¥ Same Object, same target location
a — a’ Same direction of motion
V=V Same speed, same force
0=0 Same posture
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Imitation learning

Demonstrator Imitator




Imitation learning

Demonstration . Imitation

—
No solutions (smaller range of motion)

-> Find the closest solution according to a metric

How to Imitate?
The correspondence problem
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Key ingredients of IL

Considerations
Learning human skills through LFD requires the following questions:
- What/Who to imitate?
How to imitate?

. When to imitate?



Teleoperation
+

Data glove




Key ingredients of IL

Demonstrator




Key ingredients of IL

Demonstrator

Teleoperation
+

EMG




Key ingredients of IL

Demonstrator

Teleoperation Interfaces
- Graphical user interface/Tablet

- Joysticks

Teleoperation

- More complex devices (e.g.,
exoskeleton)




Key ingredients of IL

Demonstrator
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https://www.youtube.com/channel/UCgnvGUfdIr94mddDQamEBGA



Key ingredients of IL

Demonstrator

Kinesthetic
+

Tactile




Key ingredients of IL

Demonstrator

Simulation
Oneclick.  Anyrobot. Endless Tasks.

CMUIBMIT3 I S ERE M Agent EIRA, HEA [007] HEEES
ERTR! ROBEHES

te data.

Computer Science > Robotics
(Submitted on 2 Nov 2023)

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Kalerina Fragkiadaki, Zackory Erickson, David Held, Chuang Gan



Key ingredients of IL

Demonstrator

Agile Autonomy:
Learning High-Speed Flight in the Wild

Antonio Loquercio*, Elia Kaufmann*, René Ranftl,
Matthias Miiller, Vladlen Koltun, Davide Scaramuzza

£78A™) University of
Ny Zurich™




Key ingredients of IL

Demonstrator
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Key ingredients of IL

Demonstrator

Motion capture




Key ingredients of IL

Demonstrator

Web video

Salt Bae : POV Chefs Cooking 500+ : Difference between
7.2M views Meals #food #chef #cookin... teppanyaki and hibachi

19K views



Data collection
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Data collection

Imitation learning Is very good at
In-distribution tasks, but not so good at out-
distribution tasks.
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Data collection or &4 i

Task variations
Environments
Demonstrator variance

Invariant relation
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Learning algorithms

e Recall the Gaussian distribution:

1 1 5
exp | —=(x—p)TE " (x — p)
(271-) d | 2] 2 ( ) | ( e o i s i v s 01

Expectation manmization

P(x | p,X) =

Bayosan Gaussmn mixturs modals with & Omchiet process prior Tar yo = 100




Learning algorithms
Mulfivariate Gaunssian distvibution

Univariate Gaussian distribution:

vl —

1 ..
{exp ( - ﬁ(x — ,u)z)J Radial basis function (RBF)

—

N(p,0%) = (2n0?)

reR Datapoint
{ ne R Center (or mean)

- - u)
J Parameters {1, o}

a . cR Variance

Multivariate Gaussian distribution:

1 1
N(p,X) = : ,cxp(—-m—uTZ—lm—u)
18) = gz o0 (- o~ WS-
T < RD Datapoint

D

e R Center (or mean)

a - Parameters {p, X}
Y eR Covariance matrix

https://calinon.ch/misc/EE613/EE613-nonlinearRegression.pdf



Learning algorithms
Properties of Gaussian distvibutions
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Learning algorithms
Product of Gaussians

The product of two Gaussian distributions
N(”’(l)a 2(1)) and N(u(Q), 2(2)) is defined by o (s
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Learning algorithms
Conditional probability

Let & ~ N (u,X) be defined by

T I 21 212
* <CB2>’“ (Mg)’ (221 2322)

The conditional probability P(xs|xq) is defined by

7)(£E2|CL'1) ™~ N(”C’ZC>’

with uc = Mo+ 221(211)_1(331 — W),

¥C = 3y — 01 (Z11) 1200




Learning algorithms

The GMM assumption

e There are k components. The
i’ th component is called o,

e Component w, has an
associated mean vector y; M2

o H1




Learning algorithms

The GMM assumption

e There are k components. The
i’ th component is called ;

e Component w, has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean g;
and covariance matrix o°I

Assume that each datapoint is iy  :
generated according to the \ ,
following recipe:




Learning algorithms

The GMM assumption

e There are k components. The
i’ th component is called w;

e Component w, has an
associated mean vector

e Each component generates data
from a Gaussian with mean g;
and covariance matrix o1

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random:
choose component 7 with
probability Plw),).



Learning algorithms
The GMM assumption

e There are k components. The
i’ th component is called o,

e Component w; has an
associated mean vector y;

e Each component generates data
from a Gaussian with mean g;
and covariance matrix oI

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random:
choose component /with
probability Plw,).

2. Datapoint ~ N(u; o°I')



Learning algorithms

The General GMM assumption

e There are k components. The
i’ th component is called o,

e Component o; has an
associated mean vector g,

e Each component generates data
from a Gaussian with mean x;
and covariance matrix 2;

Assume that each datapoint is
generated according to the
following recipe:

1. Pick a component at random:
choose component i with
probability P(w,).

2. Datapoint ~ N(;, %)



Learning algorithms

Mixture Models

e Formally a Mixture Model is the weighted sum of a
number of pdfs where the weights are determined by a
distribution 7

p(l’)—ﬁofo( ) + m1f1(x) + mafo(x) + ... + mp fr ()

where sz = 1

k
= Zﬂ—zfz(aj)




Learning algorithms

Gaussian Mixture Models

e GMM: the weighted sum of a number of Gaussians
where the weights are determined by a distribution 7

L) = 7T0N(IE|£L0, Yo)+ mN(z|p1,21) + ... + T N(x|pg, Xk)

where E T = 1
1=0

k

p(z) = > mN (o, T




Learning algorithms
E.M. for General GMMs  |&esmea

P(w;)on t’ th
iteration

Iterate. On the £ th iteration let our estimates be

= { ), PoAV) ... Pt), 24(t), 2o(T) ... 2(1), P1(t), pxAl) ... p{t) }

Just evaluate a
Gaussian at x;

@ E-step: Compute “expected” clusters of all datapoints

box, )= PO A POUE) ol 0.2, 0)p 0
(xk Vq) Zp(xk ‘wj, H; (t),zj(t))pj (1)

@ M-step: Estimate p, Z given our data’s class membership distributions

;P( WA 5 (pe1)= ;P( s 2 )l = e+ D = a1, e+ DF
w(e+1)= S Pk ,- ;P(Wi’x“&)
Zp(wi‘xk’/lr)

p,(t+1)=-* R _% R = #records




Gaussian
Mixture
Models




Learning algorithms
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How to Implement?

" 'I Sensing Information
Learning :

;I
»

&\ I ‘ I | Task Representation I_’ICO”W)' Policy I
7 (o) . (h) I
i

Feedback I_I

Leverage the power of learning techniques and nonlinear control




Learning algorithms

LWR

C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for control. Artificial Intelligence Review,
11(1-5):75-113, 1997

W.S. Cleveland. Robust locally weighted regression and smoothing scatterplots. American Statistical Association
74(368):829-836, 1979

GMR

Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete data via an EM approach. In Advances in
Neural Information Processing Systems (NIPS), volume 6, pages 120-127, 1994

S. Calinon. Mixture models for the analysis, edition, and synthesis of continuous time series. Mixture Models and
Applications, Springer, 2019

GPR

C.K.I. Williams and C.E. Rasmussen. Gaussian processes for regression. In Advances in Neural Information Processing
Systems (NIPS), pages 514-520, 1996

C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine learning. MIT Press, Cambridge, MA, USA, 2006

S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain. Gaussian processes for time-series modelling.
Philosophical Trans. of the Royal Society A, 371(1984):1-25, 2012

GPIS
0. Williams and A. Fitzgibbon. Gaussian Process Implicit Surfaces. In Gaussian Processes in Practice, 2007



Limitation of traditional
learning algorithms

* Limited training data
« Can only handle vector state
* Typically assume a Gaussian distribution

« Assume continuous system
* Difficult to model hybrid system

« Can not deal with multi-modal control

* Good at modeling motion primitive or low-level
physical skill
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Limits of IL

Problem 1: Correspondence Problem

Even when the robot looks more like the human, its body does not have
the same range and dynamics of motion.



Limits of IL

Problem 1: Correspondence Problem

Robots do not perceive things like we do.
Sonars, infrared sensors, lasers are common on robots and easier to
process than information from cameras.



Limits of IL

Problem 1: Correspondence Problem

él eachers >weed to train themselves before training the robots.

S




Limits of IL

Problem 2: Learning is Data-Sensitive

. Data is robot-dependent

S UR5: 6DOF Franka Panda: 7DOF



Limits of IL

Problem 2: Learning is Data-Sensitive

Data is environment-dependent

Model Learned at EPFL Model transferred at AIST/JRL



Limits of IL

Problem 2: Learning is Data-Sensitive

Need Transfer Learning methods

Model Learned at EPFL Model transferred at AIST/JRL



Limits of IL

Problem 3: Variability in Task Definition

Question: What does it mean to
perform a task?

Multiple ways to accomplish a task:

i ;’\,,_ o
o = C thiod !

multiple motions
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Limits of IL

Problem 3: Variability in Task Definition

Question: What does it mean to
perform a task?

Multiple ways to accomplish a task:
multiple motions

multiple tools




Limits of IL

Current/Future Research Directions: Learn from Small Datasets

- Learn from small datasets: Reduce the number of demonstrations needed
. Combine heterogeneous data types

Improve teaching interactions

ONQ - sht (ﬂwg



Today agenda

Paper reading (~30 mins)

 Why imitation learning (IL) (~5)

Key ingredients of IL (~5)
Data collection (~5)
_earning algorithms (~20)
_imits of IL (~5)

Examples and applications (~20)
* Motion
« Hand IK
* Force-relevant task
* Multi-modal task




Applications

Modelling Hitting Task using Dynamical Systems-Based Control

- Collect Demonstrations of hitting |
a golf ball using kinesthetic
teaching

. Collect the recorded robot states
and velocity at each time step

- We could generate a dynamical
system representing this motion:

x = f(x)




Applications

Modelling Hitting Task using Dynamical Systems-Based Control

\

\\.' \ R \
X*: target RN
\\ QO \7‘

0 ——— /] \“'_' 1
' Requires the system to be asymptotically stable at the goal, x*, Al
lim f( x‘) -0 and only at the goal: LN ML AN
e f(x)#0, Vx=x* 5

cPrL



Applications
Modelling Hitting Task using Dynamical Systems-Based Control

- We could generate a dynamical
system representing this maotion:

x = f(x)

- Guarantees asymptotically
reaching and stabilizing at
attractor: lim x = x*, where

(t—00}

x*: Ball Location

cPrL

Ball @ Starting points === Hitting trajectories




Applications

Teaching Compliant Control: What happens when stiffness not
considered?

Too stiff: Liquid spills from jerking Too compliant: Liquid spills from glass

How can we teach robot when to increase and decrease compliance?



Applications

Teaching Compliant Control: Adding Compliance

Teaching decrease in stiffness by wiggling the robot

Stiffness decrease

Reference .JW_. Actual
position position

=
e PFL Kronander and Billard, Robot Learning from Demonstration for Compliant Manipulation, ICRA 2012



Applications

Probabilistic Hand Inverse Kinematics

Probabilistic Model for Allegro Hand Probabilistic Model for Barrett Hand

VY
%0

Prediction




Applications

Virtual Frame
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Applications

-
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Applications
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Applications

Dynamic Uncertainty

______

Ig = 9(G,f,S

TN

Grasp Grasping Tactile
Matrix Force Sensin

Grasp Experience 1. K* L* S"’)}z LN



Applications

Grasp Experience

Learn Density Function

Stability Estimation




Applications

Learning of Grasp Adaptation through
Experience and Tactile Sensing

Miao Li, Yasemin Bekiroglu,
Danica Kragic and Aude Billard

IROS 2014




Experimental Results

Fan Blade Cleaning Sk nY

,E' ot , StfnessinX direction .
4 %\ I :
), =
»- Stiffness in Z diuection L

e O |

Stiffness in Y direction I

(@) Learned task manifold (h) Leamed impedance

(a) Robot setup (b) Human demonstration (¢) Kinesthetic teach-
ing
New Goal
Replanning
Dl \(;p_ == ===, Perturbation
Task Path
Manifold Planning
Human e T Reached
Demonstration o 7| ARRCUON Goal
= Impedance Impedance | | :
Learning Selection - 3
7 N Distance
Prediction
]

M. Li et al. “Learning task manifolds for constrained object manipulation”, Autonomous Robots 2016



Polishing

Learning force-dominant skills
from human demonstration

Xiao Gao, Jie Ling, Xiaohui Xiao and Miao Li .
& Xiao Gao

This video is submitted to IROS 2018

Contact force (N)

(a) (b)

(a)

X. Gao et al. “Learning Force-dominant Skills from Human Demonstration”, Submitted to IROS 2018



Assembly

Speed x4

o @

Fig. 12.  Experiment setup and demonstration phase by collaborative
insertions. a: The three pegs and six holes. b: The peg was moving towards
the hole. ¢: Searching the hole by an Archimedean spiral movement. d:
Collaborative insertions.

Searching hole

Experiment 2 : Peg-in-hole
(1) Demonstrations




Learning the moving strategy of probe

State 1 State 2 State 3

The kidney area in image changed from fuzzy to clear.

network probe motion

Predict the next motion of probe, and enable the robot to move the probe.




Collect the probe motion data

Move to the
right kidney

Rotate
90 degrees

Keep the contact point between the probe and the
human body unchanged when collecting data.



Pressure on skin,
force on 3 axises

fxe, fYe, 2

Data
collection

Quality label of the
Posture of probe, quaternion ultrasound image [;
AWe, QXe, @Yt 42t

Collect data from 5 persons

Person _____

Quantity of data 776 1348 1552
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Learning of Robotic Ultrasound Scanning Skills Through

Experience and Guided Exploration
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Multimodal
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Goal for this course

* Design: soft hand design x1

 Perception: vision, point cloud, tactile, force/torque x1

* Planning: sampling-based, optimization-based, learning-based x3

e Control: feedback, multi-modal x2

* Learning: imitation learning, RL x2

« Simulation tool (pybullet, matlab, Ope\RAVE, Issac Nvidia, Gazebo)

- How to get a robot moving! . |
?\obv'(/\(b —bo '






Learning Object-level Impedance Control for
Robust Grasping and Dexterous Manipulation

Miao Li*, Hang Yin*, Kenji Tahara+, and Aude Billard*

*Learning Algorithms and Systems Laboratory (LASA)
Ecole Polytechnique Federale de Lausanne (EPFL)
+Faculty of Engineering, Kyushu University, Japan

ICRA-2014, HongKong
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ECOLE POLYTECHNIQUE D
FEDERAIE DF LAUSANNE



Overview

“Learning Object-level Impedance Control for
Robust Grasping and Dexterous Manipulation”

Motivation

Model — Obiject-level Impedance Controller
Approach — Learning from Human Demonstration
Experiments and implementation

Conclusion

82



Motivation

Our Answer:

The desired object-level impedance can be learnt from

human demonstration

83



Motivation

Constraint Surface

R E
 R:robot
* O:object

* E:environment

84



Object-level Impedance Control

Keep object stable
Robust l
Grasping
Object-Centric
Dexterous Move object to
Manipulatio . . .
N desired configuration

N g

The desired interactions are represented in the object frame



Object-level Impedance Control

f Object Dynamics: )\ NN
H

f+f£f.,, =mx
Virtual Frame

<— Desired Behavior:

env

fonp = M% + D(% — %4) + K(x — x4)

86



Object-level Impedance Control

f =mM 'D(kg— %)+ mM1K(xq — x) + (m

—1

o I )fenru

87



Object-level Impedance Control

f=mM 'D(xg—%)+mM 'K(xq —x)+ (mh

~

Actual Trajectory

< - I)fe'rw

88



Object-level Impedance Control

f =mM DXy — %)+ mM 'K (x4 — x) + (mML — Df,..,
1 /

Desired Trajectory  Actual Trajectory

89



Object-level Impedance Control

f = mf\/f‘@i{d — %) +mM!
1\

Desired Trajectory  Actu

@xd —x) + (ML — Df.,,

7

al Trajectory

90



Object-level Impedance Control

f— mﬂ/f—@i{d — %) + mJLI_l@xd —x) + (mA
1\

Desired Trajectory  Actual Traje

Virtual Frame

91



Robust Grasping

f:D(id—k)-FK(Xd—X)

Relative Stiffness: the object stiffness in one direction is
inversely proportional to the variance of displacement
under perturbation in the corresponding direction

92



Robust Grasping

K =a{—
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Robust Grasping

ox

Relative Rotational Stiffness
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Robust Grasping: Workspace

Position of v,rtual frame
132
—_— 13
E
N 128
1.26
008
0.06 posttion of VF
= Wgrtspoge mod:ll'ed by GMM
0 "~ 012
Y(m) X(m)
K
p(x) =) meN (x|py, Sr)
k=1
1 N
K =@N Do = x ) = x) T}
i=1

95



Robust Grasping

Relative Rotational Stiffness

400
200
; @
~N 0
-200
“0%0 200 © 200 400
Y
400 400
200 200
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o =0 o 20 a6 Boo am o 0 &0
x x
Relative Translational Stiffness
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Dexterous Manipulation

Optimization:

1}{1}}1{1r Z 1f7,0(2) — {K(x, — x(i)) |

Kij < kiim, i=1.6,j = 1.6
%, = x(D)I| < Azpin, i@ = L..Nis

Human demonsation HXT _ X(?‘)H < AZgim, 1= 1Ny

Stiffness Learning: the object force and motion are recorded from
human demonstration, and used to learn an impedance model.

97



Dexterous Manipulation

desired and actual rotation angle

1400
desired rotation angle
actual rotation angle
1200
—~~
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S 1000 .
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Dexterous Manipulation

rotation stiffness

T T

B

rota_tion stiffness

w
w (6)}
T T

g
(&)

—
T T

rotation stiffness(N.mm/deg)
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Dexterous Manipulation

—

rotation stiffness(N.mm/deq)

F N

w
w

w

g
w

N

—

~trial 1
~——trial 2
—trial 3
—trial 4
trial 5
trial 6
——trial 7
—trial 8
—trial 9
——trial 10

rotation stiffness

0.8

100



Dexterous Manipulation
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Conclusion

» We introduced an object-level impedance learning approach
for robust grasping and dexterous manipulation.

» We modeled the boundary of the workspace using a Gaussian
Mixture Model.

» This learning approach could be applied in multiple ways, such

as grasp adaptation (IROS 2014 paper), grasp synthesis and
tool use tasks.

Miao Li, Yasemin Bekiroglu, Danica Kragic and Aude Billard, “Learning of Grasp Adaptation through
Experience and Tactile Sensing”, IROS 2014
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Thanks for your attention!
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