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Goal for this course

* Design: soft hand design x1

 Perception: vision, point cloud, tactile, force/torque x1

* Planning: sampling-based, optimization-based, learning-based x3

* Control: feedback, multi-modal x2
* Learning: imitation learning, RL x2
« Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)

 How to get a robot moving!



Today's Agenda

0 of sampling-based approach (~10)

0 of optimization-based approach (~20)

pack of sampling and optimization (~5)

* Recap of perception-action loop (~2)

* Learning-based motion planning (~5)

* Imitation learning (~20)

* Reinforcement learning (~10)
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Recap of sampling-based approach

® Completely describing and optimally exploring is
too hard in high dimension space
® [t IS not necessary

® Limit ourselves to finding a “good” sampling



Sampling
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PRM

- | The resulting graph is a
probabilistic roadmap
(PRM)




PRM
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R RT Rapidly Exploring Random Trees

Remarkably, we can find a solution by using
relatively few randomly sampled points.




RRT

RRT Algorithm (vaan Yoo step. n)

| (v mitialize( xaan )

2 for =/ ton do

3 Yrand = Sample( )

4 Nacar= NCAN Xrana G)

5 Vaew™ SI€E{ Nyand, Xpear SIEP_S1Z€)

6 G.add node(xoew)

7 G.add_edge( ¥oew, Yoear)

8 if Xnew™ Xgoal

C i

) success( ) New start
—J-C. Latombe. Robot Motion Planning. Kluwer. start

1991.

— S. Lavalle. Planning Algorithms. 2006.
http://msl.cs.uiuc.edu/planning/

—H. Choset et al., Principles of Robot Motion:
Theory, Algorithms, and Implementations. 2006.
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RRT revisit

Few control params of the solution
Near to collisions

Ignore trivial solution

Path quality can be bad

Quite different with different seeds

« Additional steps for collision checking

What is the problem with this approach?



RRT revisit

RRT Is not optimal

What is the problem with this approach?



Today's Agenda

0 of sampling-based approach (~10)

0 of optimization-based approach (~20)

pack of sampling and optimization (~5)

* Recap of perception-action loop (~2)

* Learning-based motion planning (~5)

* Imitation learning (~20)

* Reinforcement learning (~10)
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Recap of optimization-based approach

Can we develop a motion planner
that relies on cost function
Instead?



Potential field method

Can we create such a cost function?



Potential field method

Attraction Repulsion

N : Obstacle

Minimize the cost function



Potential field method

Attraction Repulsion
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Cost function as potential
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Potential field method

Attraction Repulsion







Potential field method
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¢ k.., 1s again a scaling factor,

¢ d; 1s the minimal distance from q to the object and O .
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Potential field method
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Potential field method
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Potential field method
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F(q)=F,

att

(q)+F,

A first-order optimization
algorithm such as gradient
descent (also known as
steepest descent) can be
used to minimize this function
by taking steps proportional
to the negative of the gradient.



Potential field method

 Local minima
« Hand crafted potential function
* Hard to compute distance

 Minimal distance may not be
continuous

* No passage between closely
spaces obstacles

 Oscillation







Trajectory planning (Cartesian space)

?

A

« Cartesian space trajectories are very to
visualize

Sequential motions of a robot to follow a straight line

« Computationally expensive: IK at each
Intermediate point
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Trajectory planning (Cartesian space)




Trajectory planning

 The key idea of trajectory planning is to use some form of trj

representation to choose the proper trj profile (polynomial...)

* This process can be applied in both joint space and Cartesian space

 Have more flexibility than sampling-base methods

?




Trajectory optimization

% Aaechin: |- 5..-;4{"

% o efficiency

e Obstacle avoidance

e uncertainty reduction

e predictability

e legibility/ intent expression
j e human comfort

e naturalness

O(A—H’ vewld -éa \—efms@rv(:.



Trajectory optimization
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Trajectory optimization

Optimization-based motion planning approaches, such as Nonlinear Programming

(NLP) and Mixed-Integer Programming (MIP), solve optimization problems, and find

solutions using gradient descent while satisfying constraints.

For instance, CHOMP optimizes a cost functional using covariant gradient descent while

TrajOpt solves a sequential convex optimization and performs convex collision checking.

Various tasks including navigation, grasping, manipulation, collision-avoidance,

running, cooking, and flying under various conditions.

Local optimal (a general problem for nonlinear optimization)



Trajectory optimization




Trajectory Optimization

min Z 10,41 — 0;]|* + other costs
t

91:’1"

subject to @, = start state, @ in goal set
joint limits

for all robot parts, for all obstacles:
% no collision ——> hnon-convex

Solution method: sequential convex optimization

https://people.eecs.berkeley.edu/~pabbeel/cs287-fal9/slides/Lec10-motion-planning.pdf


















Trajectory optimization

Efficient Trajectory Optimization for Robot Motion Planning

Yu Zhao, Hsien-Chung Lin, and Masayoshi Tomizuka

E
Objective ~ .
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" d S i Y iy . T X jeri
-~ ~—. —— Nonlinear
o AN e Op;;ml'nlz:tion Interpolation
e . Solution
Constraints (Pseudospectral) Solver
Dynamic t — N3
200 xzj’ Constraints : P
Automatic
Path Constraints =P Differentiation
Boundary
> Conditions
Position bounds: Gmin S q(t) < Qmax L. . . . A
Velocity bounds: g, <q(t)<q Fig. 2: Efficient numerical method for trajectory optimization
oz min — = 9Ymax
Turquc bounds: T min i T“) '_: Tmnx

Torque rate bounds: Friin < T(t) < Timsx



Trajectory optimization

STOMP: Stochastic Trajectory Optimization for Motion Planning

Mrinal Kalakrishnan' Sachin Chitta? Evangelos Theodorou' Peter Pastor! Stefan Schaal'

N -1 - STOMP is an algorithm that performs local optimization,
min E Z q(0:) + 56 RO i.e. it finds a locally optimum trajectory rather than a global
¢ i=1 = one. Hence, performance will vary depending on the initial
(a) (h)
Fig. 1. (a) The Willow Garage PR2 robot munipulating objects in a

household environment. (b) Simulation of the PR2 robot avoiding a pole
in a torque-optimal fashion
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Today's Agenda

0 of sampling-based approach (~10)

0 of optimization-based approach (~20)

pack of sampling and optimization (~5)

* Recap of perception-action loop (~2)

* Learning-based motion planning (~5)

* Imitation learning (~20)

* Reinforcement learning (~10)



£+ Drawback of sampling and optimization-
o based approaches

 Flexibility
Human-like
*Reactive
*Sensory feedback



Drawback of sampling and optimization-
based approaches

+Flexibility




Drawback of sampling and optimization-
based approaches

Human-like

https:.//www.therobotreport.com/researchers-develop-human-aware-motion-planning-algorithm/



Drawback of sampling and optimization-
based approaches

Human-like

https://www.youtube.com/watch?v=-9JrDMBg2HE&t=38s&ab_channel=MITCSAIL



Drawback of sampling and optimization-
based approaches

Reactive Human-to-Robot Handovers of Arbitrary Objects

Reactive




Drawback of sampling and optimization-
based approaches

Reactive

https://research.nvidia.com/publication/2021-03_reactive-human-robot-handovers-arbitrary-objects



Drawback of sampling and optimization-
based approaches

Motor Update

plan e ‘
Sensory
receiver

Internal
copy

*Sensory feedback ~ Command
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0 of optimization-based approach (~20)
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Robotics — Learn the mapping
from perception to action
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Motion Planning in Robotics
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Robotics — Learn the mapping from perception to action
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Today's Agenda

0 of sampling-based approach (~10)

0 of optimization-based approach (~20)

pack of sampling and optimization (~5)

* Recap of perception-action loop (~2)

* Learning-based motion planning (~5)

 Imitation learning (~20)

* Reinforcement learning (~10)



Learning

Reinforcement Observational learning
Verbal instructions Imitation learning




Imitation learning

Learning seems to be a negative force in evolution.
How can learning have evolved?

Learning serves as a pacemaker for evolution, when exploratory
behavior leads to a breakthrough for the survival of the species, the
capacity for that kind of exploratory behavior and the imitation of this

act Is favored by natural selection.

E. Wilson, Sociobiology, Belknap Harvard, 2000




Imitation learning

Imitation Capabilities in Animals

Biological
Inspiration

Which species may exhibit imitation is still a main
area of discussion and debate

One differentiate “true” imitation from copying
(flocking, schooling, following), stimulus
enhancement, contagion or emulation




Imitation learning

X =¥ Same Object, same target location
a — a’ Same direction of motion
V=V Same speed, same force
0=0 Same posture
9.,0,,6.) 4.,6,,6,)
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Imitation learning

Demonstrator Imitator




Imitation learning

Demonstration . Imitation

—
No solutions (smaller range of motion)

-> Find the closest solution according to a metric

How to Imitate?
The correspondence problem



Imitation learning

Learning What to imitate

Imitation learning — Programming by Demonstration:
- A way to speed up learning, to reduce the search space
» A way to share with robots the same vocabulary of motor skills




Imitation learning

Imitation Learning in Robots
Prof. Aude Billard, lasa.epfl.ch

A . .
How to imitate?

5, Level 3: Learning primitives of motion ~
5 3
E o
© Level 2: Exact reproduction of trajectories 3
(@)

5 El
o . o
2 Level 1: One-shot learning =
—1

Level 0: Following — an implicit imitation mechanism
\/



Imitation learning

M;(0)8, + C1(0,6)6 + g, () =T




Imitation learning

learning




Imitation learning

Programming by Demonstration (Imitation Learning)

» Atask is characterized by an underlying
deterministic relationship between the
relevant variables

» Demonstration: reproducing the underlying Learn
relationships corrupted by white noise.




Imitation learning

Va 'gbo/t
X =6
@\/\/-N( o> KT
s ) Wikt m‘s{??
Owsstren Lolbiga 3



Imitation learning
£=f(¢)

Streamlines of a globally asymptotically stable
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Given: Some demonstrations of a point-to-point motion.
L earned: Globally asymptotically stable map from states to velocities stable at the sole target.
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Imitation learning
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Imitation learning

3x speed

Robustness to perturbations




Imitation learning
Google Deep Learning for Grasping

Learning Hand-Eye Courdination for Robotic Grasping with Deep Learning
and Large-Scale Data Collection

Serpey Liview SLEVINE#GO0GLE
Prter Pastor PETERPASTOR B GOOGLF
Krizhevsky KRIZHEVSKY G000




Imitation learning

Stability = sensory information

sig,(5)

Object-level Impedance Controller
+ motor action o
Fingertip g
Virtual
Frame v

Learning of Grasp Adaptation through
Experience and Tactile Sensing

Miao Li, Yasemin Bekiroglu,

Danica Kragic and Aude Billard

IROS 2014




Imitation learning
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Today's Agenda

0 of sampling-based approach (~10)
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Goal for this course

* Design: soft hand design x1

 Perception: vision, point cloud, tactile, force/torque x1

* Planning: sampling-based, optimization-based, learning-based x3

* Control: feedback, multi-modal x2
* Learning: imitation learning, RL x2
« Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)

 How to get a robot moving!



