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Goal for this course

* Design: soft hand design x1

 Perception: vision, point cloud, tactile, force/torque x1

* Planning: sampling-based, optimization-based, learning-based x3

* Control: feedback, multi-modal x2
* Learning: imitation learning, RL x2
« Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)

 How to get a robot moving!



Today's Agenda

 Drawback of Sampling-based approach (~5)

« Potential field method (~15)
e attractive, repulsive

« Gradient descent algorithm (~10)
 vector field, velocity field, dynamic system

* Trajectory planning(~25)

 Parameter, joint space, cartesian space
* Planning as optimization (~20)

« Parameter, joint space, cartesian space
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—J-C. Latombe. Robot Motion Planning. Kluwer.
1991.

— S. Lavalle. Planning Algorithms. 2006.
http://msl.cs.uiuc.edu/planning/

—H. Choset et al., Principles of Robot Motion:

Theory, Algorithms, and Implementations. 2006.
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RRT Revisit

New start




RRT revisit

What is the problem with this approach?



RRT revisit

Few control params of the solution
Near to collisions

Ignore trivial solution

Path quality can be bad

Quite different with different seeds

« Additional steps for collision checking

Whd is the-preblem with this approach?
P/ T



RRT revisit

RRT Is not optimal

What is the problem with this approach?



Motion planning as optimization

Can we develop a motion planner
that relies on cost function
Instead?



Cost function in 2D




Potential field method

Can we create such a cost function?



Potential field method

Attraction Repulsion

N : Obstacle

Minimize the cost function



Potential field method

Attraction Repulsion
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Cost function as potential
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Potential field method

Attraction Repulsion







Potential field method
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¢ k.., 1s again a scaling factor,
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¢ Q" is the distance of influence of the object.
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Potential field method
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Potential field method
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Potential field method
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F(q)=F

att

A first-order optimization
algorithm such as gradient
descent (also known as
steepest descent) can be
used to minimize this function
by taking steps proportional
to the negative of the gradient.




Potential field method

Gradient Descent or Steepest Descent

¢ Gradient descent is a first-order optimization algorithm.

¢ To find a local minimum of a function using gradient descent,
one takes steps proportional to the negative of the
gradient (or of the approximate gradient) of the function at
the current point.

GradientDescent(x;, ;;, Xg,.10 - V)
while x. .#x¢ .
Xn+1 = Xp 'anﬂxn)’ n=0 ‘ .v/,fff'":’

end




Potential field method

Gradient Descent or Steepest Descent

GradientDescent(x,, xg5,.1, - V/)
while x #xg,.1
Xn+1 = Xy 'anf(xn)’ n=0

end

where
v >0 is a small enough number.

Note that the step size y must be small enough to ensure that
we do not collide with an obstacle or overshoot our goal position.

The value of the step size y is allowed to change at every
iteration.
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Potential field method

N
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Potential field method

 Local minima
« Hand crafted potential function
* Hard to compute distance

 Minimal distance may not be
continuous

* No passage between closely
spaces obstacles

 Oscillation
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Path planning notes

Until now, we have only discussed path: the collection of a sequence of
robot configurations

It is not clear how the robot can follow the planned path (*implementation)

We don’t care about the timing that the robot reaches these configurations

Path is usually discrete and represented as key via-points

B
* Trajectory = path + timing law ,,.-é’/“"'\-\.\

A
VQ( ) O\C(—e llh)‘(\ ‘?\ ~ Sequential robot movements in a path

.

Same Path Different
—— Trajectories



Today's Agenda

 Drawback of Sampling-based approach (~5)

« Potential field method (~15)
e attractive, repulsive

« Gradient descent algorithm (~10)
 vector field, velocity field, dynamic system

* Trajectory planning (~25)
 Parameter, joint space, cartesian space

* Planning as optimization (~20)




Trajectory planning (joint space)
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Trajectory planning (joint space)
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Trajectory planning (Cartesian space)

« Assume a straight line between pose A and
pose B

. N\  In this way, we force the robot to move from A
' to B through a straight line

TN

« Then we divide the line into small segments
and move the robots through all the
Intermediate points

* The IK IS C ach I
and send to the robot controller

Sequential motions of a robgf to fpllow a stfajght line

JA
Desired End-effector Pose B

JO1 ues
DNy Oy 3ay Py 0, |
n o a P . . g’ . New Pose
y y y AN Inverse Kinematics 3 Joint Controllers B
n o a P 0,
Z Z Z Z 0
0 0 0 1 s




Trajectory planning (Cartesian space)

?

A

« Cartesian space trajectories are very to
visualize

Sequential motions of a robot to follow a straight line

« Computationally expensive: IK at each
Intermediate point



in Cartesian coordinatée
may force the robot to
run into itself.

The trajectory may
require a sudden change

in the joint angles. o

£
% - Difficult to predict singularity (ﬂ%{
/\ » Self-collision

e Out of reach

* No IK solution along the path



Trajectory planning (Cartesian space)

Given: a simple 2-DOF robot (mechanism) .

Required: s
Move the robot from point A to point B.
Suppose that:
At initial point A: a=20° & =30°. =
T T — . C @ | > X

At final point B: a=40° & p=80°. {)1  2-DOFMechanism
Both joints of the robot can move at the maximum rate of 10

—_— - e ——
degrees/sec.
T ———

Example from: https://www.slideshare.net/AlaaKhamis/motion-planning



https://www.slideshare.net/AlaaKhamis/motion-planning

Trajectory planning (Cartesian space)

- Joint-space, Non-n(lrmalized Mmmt’s:

f\/wv . .
One way to move the robot from point A to B is to run both
° ° . ° e P
joints at their maximum angular velocities. This means

that at the end mterval, the lower link of the
robot will have finished its motion, while the upper link
continues for another three seconds, as shown here:

Time
(sec) | 2] B $ The path is irregular, and
0 120130 :
i [sql 0 the distances traveled by the )(
2 | 401 50 robot’s end are W _
3| 40|60 \
4 | 40|70 \/ "‘ob(-eﬂ’\ ?
5 (407 80 E
o
» X




Trajectory planning (Cartesian space)

- Basics: Joint-space, Normalized Movements

. . .\/_v\/ "
The motions of both joints of the robot are normalized such that
the joint with smaller motion will move proportionally slower so
that both joints will start and stop their motion simultaneously.

In this case, both joints move at different speeds, but move
continuously together. a changes@ d grees/ second while B

change degreesTsm —
e @ | B “
0 |20 30 P The segments of the
1| 2440 movement are much more
"; “;i ;';; similar to each other than
4 | 36| 70 before, but the path is still
5| 40| 80 w (and different
from the previous case)



Trajectory planning (Cartesian space)

« Basics: Cartesian-space Movements

Now we want the robot’s hand to follow a known path
between points A and B, say, in a straight line.

The simplest solution would be to draw a line between points A

and B, W’c\o}say, 5 segments, and solve for

necessary zg_lg/le,s_a and 3 at each point. This is called__

interpolation between points A and B. ( 3

Timey

(sec) a | p
O\ 20| 30
o b T The path is a straight line,
2 | 16 | 69
3| 21|77 but the joint angles are not
* / 29 | 81 uniformly changing.
J 40 | 80




Trajectory planning (Cartesian space)

Basics: Cartesian-space Movements

y A

¢ This trajectory is in Cartesian-
space since all segments of the
motion must be calculated based
on the information expressed in a

Cartesian frame —

[ ——
Cartesian-space movements
¢ Although the resulting motion is a straight (and consequently,
known) trajectory, it is necessary to solve for the joint
values at each point.

o Obviously,(rjr_iany more Eoint; must be calculated for better
accuracy; with w the robot will not exactly

follow the lines at each segment.
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Basics: Cartesian-space Movements

¢ In this case, it is assumed that the robot’s actuators are
strong enough to provide the large forces necessary to
accelerate and decelerate the joints as needed. For
example, notice that we are assuming the arm will be
instantaneously accelerated to have the desired velocity right
at the beginning of the motion in segment 1.

¢ If this is not true, the ¥4
robot will follow a _—
trajectory different “2—i—
from our assumption; it ! 1453
will be slightly behind as ’
it accelerates to the

desired speed.

o | B

2

J | 21|77
4 Yy29) 81
5| 47|80




Trajectory planning (Cartesian space)

Basics: Cartesian-space Movements
¢ Note how the difference between two consecutive values is
larger than the maximum specified joint velocity of 10

degrees/second (e.g., between times 0 and 1, the joint must
move 25 degrees) o

Q_)&;gm;swﬂalnable Also note how, 1n this case,

"___‘__f.—\
joint 1 moves downward first before moving up.
N

‘H

0 | 20 V30
5 b 55

| 69

| o b 3
'y

81
80
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Trajectory planning (Cartesian space)

Basics: Cartesian-space Movements

¢ Trajectory planning with an acceleration/deceleration
regiment:
Divide the segments differently by starting the arm with
smaller segments and, as we speed up the arm, going at a
constant cwlwﬁaﬁy—?}éﬁelerating with

smaller segments as we approach point B. \/4 ( (.Q
Decelerate P

Y A

Constant cruising rate

Accelerate

For EW t:
Acce era’tion:/a,s
Segment: x=(1/ <

Cruising@?&@




Trajectory planning (Cartesian space)

Basics: Cartesian-space Movements
¢ Trajectory planning with an acceleration/deceleration

regiment: ﬁ
Of course, we still need to solve the inverse kinematic i
equations of the robot at each point, which is similar to the : {
previous case. o

However, in this case, instead of dividing the straight line AB

into equal segments, we may divide it based on x=(1/2).at? —
until such time t when we attain the cruising velocity of v=at.
Similarly, the end portion of the motion can be divided based

on a decelerating regiment.



Trajectory planning (Cartesian space)

» Basics: Cartesian-space Movements
¢ Another variation to this trajectory planning is to plan a path

that is not straight, but one that follows some desired path,
for example a quadratic equation.

A case where straight line
path is not recommended.

To do this, the coordinates of each segment are calculated based
on the desired path and are used to calculate joint variables at
each segment; therefore, the trajectory of the robot can be
planned for any desired path.

N\~ \




Trajectory planning @t s_p@

374 Order Polynomial

¢ In this application, the initial location and.erentatlon of the
robot are known and, using the inverse kinematic equations,

the final joint angles for the desired position and orientation
are found.

B¢
— Initial Location and

orientation of the robot |- s Kinatnatios Final Joint Angles

— Initial Joint Angles —

— Desired Location and

— '"';?, | orientation of the robot. «5 i @ dL 5
¢ However, the motions of’of the robot ust43e) V

planned individually.



Trajectory planning (Joint space)

371 Order Polynomial
¢ Consider one of the joints,

At the beginning of the motion segment at time t;
<

The joint angle 1s 0;

Q following 3rd order polynomlal trajectory Q

=C +ct+c2t +ct
/\/\/—\/
4 Unknowns: c¢,,c,,c, &c;

4 pleces of information: 4(t,) =0,
olt,) =0,
0(t)=0 D, \/‘;f
ot,)=0 /



Trajectory planning (Joint space)

« 3714 Order Polynomial

¢ Consider one of the joints,
6, following 3 order polynomial trajectory

Ot)=c, +ct+et’ +et
Taking the first derivative of the polynomial:
0(t)=c, +2c,t+3cit’

Substituting the initial and final conditions:
0)=c, =0
0(t,)=c,+ct, + cztf. + c3t‘§. =0,

O(t)=c, =0 0
. 9,
0(,)=c +2ct,+ 3c3t; =/() 9’

J |

0

1
1
0
0

0,

0
I
1
1

In matrix form




Trajectory planning (Joint space)

 3rd Order Polynomial

071 0 0 0Tec]
9_./' _ 1 Ly t.?‘ "‘.7 C
0, 0O 1 0 0 &
0,1 |0 1 2 3t§.__c3_

¢ By solving these four equations simultaneously, we get the
necessary values for the constants. This allows us to calculate
the joint position at any interval of time, which can be
used by the controller to drive the joint to position. The same
process must be used for each joint individually, but they are
all driven together from start to finish. -

o Kpplying this third-order polynomial to each joint motion
creates a/motlon profile that can be used to drive each joint.




Trajectory planning (Joint space)

« 3rd Order Polynomial

¢ If more than two points are specified, such that the robot will
go through the points successively, the final velocities and
positions at the conclusion of each segment can be used
as the initial values for the next segments.

Sequential robot movements in a path

¢ Similar third-order polynomials can be used to plan each
section. However, although positions and velocities are
continuous, accelerations are not, which may cause problems.



Trajectory planning (Joint space)
 3rd Order Polynomial

o Example: It is desired to have the first joint of a 6-axis robot
C \\ go from initial angle of 30° to a final angle of 75° in 5 seconds.
( Using a third-order polynomial, calculate the joint angle at 1, 2,
3, and 4 seconds.

¢ Gilven:
f=0 0(t) =30
t, =5 o@,)="175
(t)=0
0(t,)=0
¢ Required:
Gat t=123 and 4



Trajectory planning (Joint space)
« 371 Order Polynomial

o Example (cont’d):

¢ Solution: Substituting the boundary conditions:

O(t)=c, =0 0(t)=c, =30
0t,)=c,+ct, + czt;. 4 c3t;. =0, 0(,)=c,+c(5)+c, (5)° +¢,(5) =75
l6t)=c, =0 ~ 16)=¢ =0
() =0, +2c,t,+36,87 =0 (t) =6, +2¢,(5)+3¢,(5)* =0
y

¢, =30,¢,=0,c, =5.4,¢c; =—0.72



Trajectory planning (Joint space)

371 Order Polynomial
o Example (cont’d): This results in the following cubic
polynomial equation for position as well as the velocity and

acceleration equations for joint 1:

0(t)=30+5.4t> -0.72¢

O(t) =10.841 —2.16¢

O(t) =10.84 —4.32¢

Substituting the desired time intervals into the motion
equation will result in:

0(1)=34.68°, 6O(2)=45.84°, 0(3)=59.16°, 6(4)=70.32°



Trajectory planning (Joint space)

« 374 Order Polynomial

o Example (cont’d): The joint angles, velocities, and
accelerations are shown below. Notice that in this case, the
acceleration needed at the beginning of the motion is
10.8°/sec? (as well as -10.8°/sec? deceleration at the conclusion

of the motion). 80
Position
0(t)=30+5.4t> —0.72¢° //
?(t):10.84t—2.1612 S —
O(t)=10.84 —4.32¢
Velocity
T 2 3 & 5 s

Seconds

Joint positions, velocities, and accelerations



Trajector Ianning (Joint space)

e 1nitial and ending positions, velocities, and
accelerations of a segment yields six pieces of information,
enabling us to use a fifth-order polynomial to plan a
trajectory, as follows:

Ot)=c, +ct+ct’ +et’ +et’ +et’
O(t) = ¢, +2¢,t +3¢,t” +4e,t’ +5¢t
(1) = 2c, +6¢,t +12¢,t* +20c.t°
These equations allow us to calculate the coefficients of a fifth-

order polynomial with position, velocity, and acceleration
boundary conditions.



Trajectory planning (Joint space)

 5th Order Polynomial

o Example: Repeat Example-1, but assume the initial
acceleration and final deceleration will be 5°/sec?.

o Solution: From Example-1 and the given accelerations, we
have: | )
0,=30° 6 =0°/sec 6. =5"/sec’

g, =175 Qf =0°/sec 0], = —5%/sec’

Substituting in the foHowing equations will result in:

i . 2 3 4 5
Q(t)—co+clt+czt +eyt eyt et =30 =0 g, =05
O(t) = ¢, +2c,t +3cyt” +4c,t” +5ct” 7 ¢ Z16 ¢, =058 ¢, =0.0464

Lé(t) =2c, +6¢c,t +12¢,t* +20c.t>

J\




Trajectory planning (Joint space)

 5th Order Polynomial
o Example (cont’d): This results in the following motion

equations: gy _ 3042 52 41.6¢° —0.58* +0.04641°
O(t) =5t +4.8t> —2.32¢* +0.232¢
O(t) =5+9.6t —6.9¢> +0.928¢°

=

l)().‘"\ition//"_—_
Gl
440) //

0 \

—

Acceleration

1 I T I
0 1 2 3 + 3

Seconds



Trajectory planning (Joint space)
* 5th Order Polynomial

¢ To ensure that the robot’s accelerations will not exceed its
capabilities, acceleration limits may be used to calculate tThe

h——-_——-.
necessary time to reach the target.

For 6,=0 and 6}=O
6(0/'_‘91‘)

Pl - (e~ — e
In example-2: 4 —

. le(75=30 S o

|9 max - ES _0)2 ) =10.8 ) ) Acoulesition 1

Seconds

Joint positions, velocities, and
max accelerations

The maximum acceleration is
8.7°/sec2< |&




Trajectory planning (Cartesian space)

» Cartesian-space trajectories relate to the motions of a robot
relative to the Cartesian reference frame, as followed by the
position and orientation of the robot’s hand.

» In addition to simple straight-line trajectories, many other
schemes may be deployed to drive the robot in its path between
different points.

» In fact, all of the schemes used for joint-space trajectory
planning can also be used for Cartesian-space trajectories.

» The basic difference is that for Cartesian-space, the joint values
must be repeatedly calculated through the inverse
kinematic equations of the robot.

— Fost Lk
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Trajectory planning (Cartesian space)

e Procedure

1. Increment the time by t=t+At.

2. Calculate the position and orientation of the hand
based on the selected function for the trajectory.

3.Calculate the joint values for the position and
orientation through the inverse kinematic equations of

the robot. T ——
4.Send the Whe controller. ’k

_5.Go to the beginning of the loop. »G \ U&ﬂk‘ '




Trajectory planning (Cartesian space)

« Example

A 3-DOF robot designed for lab
experimentation has two links, each 9
inches long. As shown in the figure, the
coordinate frames of the joints are such
that when all angles are zero, the arm is
pointed upward.

The inverse kinematic equations of the robot are also given
below.

We want to move the robot from point (9,6,10) to point
(3,5,8) along a straight line.

Find the angles of the three joints for each intermediate point
and plot the results.



Trajectory planning (Joint space)

« Example (cont’d)
Given:

A(9,6,10) —=ehline y B(3 5 8)

Inverse Kinematics Solution \} -

0, =tan"'(P, tEy)
0, =cos™ ((P-" /le +(P.-8) —162%2}

[le(p-8N1+c,)+Ps,)
| st
Required:

Angles of the three joints for each intermediate point and plot
the results.

[8]



Trajectory planning (Joint space)

« Example (cont’d)

We divide the distance between the start and the end points
into 10 segments, although in reality, it is divided into many
more sections. The coordinates of each intermediate point are
found by dividing the distance between the initial and the end
points into 10 equal parts.

The Hand Frame Coordinates and Joint Angles

Straight line equation for the Robot
. P, P P, t
between point (x,,y,,z,) and g = T '
point (X,,y,,Z,) 1S 8.4 5.9 2.8
7.8 5.8 9.6
X—X; ¥—¥ Z—& 1.2 5.7 9.4
= = 6.6 5.6 9.2
Xo =X Vo=V Z,— 4 6 55 9
5.4 5.4 8.8
X—9:y—622_10 48 5.3 8.6
3-9 5-6 8-10 i
(x—9)/6=y—6=0.5(z—10) 3 5




Trajectory planning (Cartesian space)

« Example (cont’d)

The inverse kinematic equations are used to calculate the
joint angles for each intermediate point, as shown in the

table.
° ™ 160
The joint angles |
140 -
are shown here. . ks

100

Degrees

-

/( 06 ‘EI Joint 1
//t 4': ) e

Intermediate Point Number
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Trajectory planning

 The key idea of trajectory planning is to use some form of trj

representation to choose the proper trj profile (polynomial...)

* This process can be applied in both joint space and Cartesian space

 Have more flexibility than sampling-base methods

?




Trajectory planning

* No optimality guaranteed
* Difficult to generalize to humanoids

 No dynamics is considered (The maximal acceleration is checked after

planning)
 Other constraints such as collision avoidance are not considered.
« Restrictive and not human-like

« Still not connected with the sensor and actuator (almost only geometry)



Today's Agenda

 Drawback of Sampling-based approach (~5)

« Potential field method (~15)
e attractive, repulsive

« Gradient descent algorithm (~15)
 vector field, velocity field, dynamic system

* Trajectory planning (~25)
 tfrajectory and path
« Parameter, joint space, cartesian space

* Planning as optimization (~20)




Trajectory optimization




Trajectory optimization

% Aaechin: |- 5..-;4{"

% o efficiency

e Obstacle avoidance

e uncertainty reduction

e predictability

e legibility/ intent expression
j e human comfort

e naturalness

O(A—H’ vewld -éa \—efms@rv(:.



Trajectory optimization
farefirn: U st
—b@ 0?‘6‘.”\;@‘6] ON.’ e path length

e efficiency

% . S e obstacle avoidance
S — m\/j / ll\ U e uncertainty reduction
e predictability

Sé E ) e legibility/ intent expression

-S._t ‘5 S( 0 - qs e human comfort

e naturalness

5(7) ¢ _?3 0(«"(:—(\(\,\)&, f% \—e(ﬂ’%@rvﬁ.
oo (onstiomts




Trajectory optimization

Optimization-based motion planning approaches, such as Nonlinear Programming

(NLP) and Mixed-Integer Programming (MIP), solve optimization problems, and find

solutions using gradient descent while satisfying constraints.

For instance, CHOMP optimizes a cost functional using covariant gradient descent while

TrajOpt solves a sequential convex optimization and performs convex collision checking.

Various tasks including navigation, grasping, manipulation, collision-avoidance,

running, cooking, and flying under various conditions.

Local optimal (a general problem for nonlinear optimization)



Trajectory optimization




Trajectory Optimization

min Z 10,41 — 0;]|* + other costs
t

91:’1"

subject to @, = start state, @ in goal set
joint limits

for all robot parts, for all obstacles:
% no collision ——> hnon-convex

Solution method: sequential convex optimization

https://people.eecs.berkeley.edu/~pabbeel/cs287-fal9/slides/Lec10-motion-planning.pdf


















Trajectory optimization

Efficient Trajectory Optimization for Robot Motion Planning

Yu Zhao, Hsien-Chung Lin, and Masayoshi Tomizuka
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Position bounds: Gmin S q(t) < Qmax L. . . . A
Velocity bounds: g, <q(t)<q Fig. 2: Efficient numerical method for trajectory optimization
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Trajectory optimization

STOMP: Stochastic Trajectory Optimization for Motion Planning

Mrinal Kalakrishnan' Sachin Chitta? Evangelos Theodorou' Peter Pastor! Stefan Schaal'

N -1 - STOMP is an algorithm that performs local optimization,
min E Z q(0:) + 56 RO i.e. it finds a locally optimum trajectory rather than a global
¢ i=1 = one. Hence, performance will vary depending on the initial
(a) (h)
Fig. 1. (a) The Willow Garage PR2 robot munipulating objects in a

household environment. (b) Simulation of the PR2 robot avoiding a pole
in a torque-optimal fashion

D 50',119(2 (/OC ¢

40

003~ v

N
L

002 P

N
wn

‘s
wn

403

Sum of abs. joint torques (Nm)

| 2 3 4
Time (scc)



Trajectory optimization (reference)

N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP: Gradient optimization techniques for efficient motion planning,” 2009 IEEE
International Conference on Robotics and Automation, May 2009, doi: 10.1109/robot.2009.5152817.

< bib >

J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Finding Locally Optimal, Collision-Free Trajectories with Sequential
Convex Optimization,” Robotics: Science and Systems IX, Jun. 2013, doi: 10.15607/rss.2013.ix.031.

< bib >

S. Dai, S. Schaffert, A. Jasour, A. Hofmann, and B. Williams, “Chance Constrained Motion Planning for High-Dimensional Robots,” 2019
International Conference on Robotics and Automation (ICRA), May 2019, doi: 10.1109/icra.2019.8793660.

< bib >

J. Carius, R. Ranftl, V. Koltun, and M. Hutter, “Trajectory Optimization With Implicit Hard Contacts,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3316—-3323, Oct. 2018, doi: 10.1109/Ira.2018.2852785.

< bib >

A. Wang, A. Jasour, and B. C. Williams, “Non-Gaussian Chance-Constrained Trajectory Planning for Autonomous Vehicles Under Agent
Uncertainty,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6041-6048, Oct. 2020, doi: 10.1109/Ira.2020.3010755.

< bib >

J. Tordesillas, B. T. Lopez, and J. P. How, “FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments,” 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov. 2019, doi: 10.1109/iros40897.2019.8968021.

< bib >

R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “GuSTO: Guaranteed Sequential Trajectory optimization via Sequential Convex
Programming,” 2019 International Conference on Robotics and Automation (ICRA), May 2019, doi: 10.1109/icra.2019.8794205.

< bib >

R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LOQR-trees: Feedback Motion Planning via Sums-of-Squares Verification,”
The International Journal of Robotics Research, vol. 29, no. 8, pp. 1038-1052, Apr. 2010, doi: 10.1177/0278364910369189.

< bib >

Y. Shirai, X. Lin, Y. Tanaka, A. Mehta, and D. Hong, “Risk-Aware Motion Planning for a Limbed Robot with Stochastic Gripping Forces
Using Nonlinear Programming,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 4994-5001, Oct. 2020, doi:
10.1109/Ira.2020.3001503.

< bib >



http://dx.doi.org/10.1109/robot.2009.5152817
https://uclalemur.com/blog/motion-planning-2-trajectory-optimization#doi101109robot20095152817
http://dx.doi.org/10.15607/RSS.2013.IX.031
http://dx.doi.org/10.15607/RSS.2013.IX.031
https://uclalemur.com/blog/motion-planning-2-trajectory-optimization#doi1015607rss2013ix031
http://dx.doi.org/10.1109/ICRA.2019.8793660
https://uclalemur.com/blog/motion-planning-2-trajectory-optimization#doi101109icra20198793660
http://dx.doi.org/10.1109/LRA.2018.2852785
https://uclalemur.com/blog/motion-planning-2-trajectory-optimization#doi101109lra20182852785
http://dx.doi.org/10.1109/LRA.2020.3010755
http://dx.doi.org/10.1109/LRA.2020.3010755
https://uclalemur.com/blog/motion-planning-2-trajectory-optimization#doi101109lra20203010755
http://dx.doi.org/10.1109/IROS40897.2019.8968021
https://uclalemur.com/blog/motion-planning-2-trajectory-optimization#doi101109iros4089720198968021
http://dx.doi.org/10.1109/ICRA.2019.8794205
http://dx.doi.org/10.1109/ICRA.2019.8794205
https://uclalemur.com/blog/motion-planning-2-trajectory-optimization#doi101109icra20198794205
http://dx.doi.org/10.1177/0278364910369189
https://uclalemur.com/blog/motion-planning-2-trajectory-optimization#doi1011770278364910369189
http://dx.doi.org/10.1109/lra.2020.3001503
http://dx.doi.org/10.1109/lra.2020.3001503
https://uclalemur.com/blog/motion-planning-2-trajectory-optimization#doi101109lra20203001503

Today’'s Summary

 Drawback of Sampling-based approach (~5)
- Potential field method (~15) \ /

e attractive, repulsive

- Gradient descent algorithm (~10) /M__

 vector field, velocity field, dynamic systém

 Trajectory planning(~25) .
 Parameter, joint space, cartesian space

- Planning as optimization (~20) V"
« Parameter, joint space, cartesian space




Goal for this course

* Design: soft hand design x1

 Perception: vision, point cloud, tactile, force/torque x1

* Planning: sampling-based, optimization-based, learning-based x3

* Control: feedback, multi-modal x2
* Learning: imitation learning, RL x2
« Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)

 How to get a robot moving!



Goal for this course

* Next course: course project kick-off

* Please download and play with pyBullet or any other
robot simulator

« Choose one of the projects and find your group
 Make a detailed pipeline and the key milestones

* Please contact us directly if you have any guestions



