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Goal for this course

• Design：soft hand design  x1

• Perception: vision, point cloud, tactile, force/torque x1

• Planning: sampling-based, optimization-based, learning-based x3

• Control: feedback, multi-modal x2

• Learning: imitation learning, RL x2

• Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)

• How to get a robot moving! 



Today’s Agenda

• Drawback of Sampling-based approach (~5)

• Potential field method (~15)

• attractive, repulsive 

• Gradient descent algorithm (~10)

• vector field, velocity field, dynamic system

• Trajectory planning(~25)

• Parameter, joint space, cartesian space 

• Planning as optimization (~20)

• Parameter, joint space, cartesian space 



RRT Revisit

start

goal

New start



RRT revisit

What is the problem with this approach?



RRT revisit

What is the problem with this approach?

• Few control params of the solution

• Near to collisions

• Ignore trivial solution

• Path quality can be bad

• Quite different with different seeds

• Additional steps for collision checking



RRT revisit

What is the problem with this approach?

RRT is not optimal



Motion planning as optimization

Can we develop a motion planner 

that relies on cost function 

instead? 



Cost function in 2D



Potential field method

Can we create such a cost function?



Potential field method

Attraction Repulsion

Minimize the cost function



Potential field method

Attraction Repulsion

Gradient 



Cost function as potential



Potential field method

Attraction Repulsion



Potential field method
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Potential field method



Potential field method



Potential field method



Potential field method



Potential field method



Potential field method



Potential field method



Potential field method

• Local minima

• Hand  crafted potential function

• Hard to compute distance

• Minimal distance may not be 
continuous

• No passage between closely 
spaces obstacles

• Oscillation



Potential field method



Path planning notes 

• Until now, we have only  discussed path: the collection of a sequence of 

robot configurations

• It is not clear how the robot can follow the planned path (*implementation)

• We don’t care about the timing that the robot reaches these configurations

• Path is usually discrete and represented as key via-points

• Trajectory = path + timing law



Today’s Agenda

• Drawback of Sampling-based approach (~5)

• Potential field method (~15)

• attractive, repulsive 

• Gradient descent algorithm (~10)

• vector field, velocity field, dynamic system

• Trajectory planning (~25)

• Parameter, joint space, cartesian space 

• Planning as optimization (~20)



Trajectory planning (joint space)



Trajectory planning (joint space)



Trajectory planning (joint space)



Trajectory planning (Cartesian space)

• Assume a straight line between pose A and

pose B

• In this way, we force the robot to move from A

to B through a straight line

• Then we divide the line into small segments

and move the robots through all the

intermediate points

• The Ik is computed at each intermediate point

and send to the robot controller



Trajectory planning (Cartesian space)

• Cartesian space trajectories are very to

visualize

• Computationally expensive: IK at each

intermediate point



Trajectory planning (Cartesian space)

• Difficult to predict singularity

• Self-collision

• Out of reach

• No IK solution along the path



Trajectory planning (Cartesian space)

Example from: https://www.slideshare.net/AlaaKhamis/motion-planning

https://www.slideshare.net/AlaaKhamis/motion-planning


Trajectory planning (Cartesian space)



Trajectory planning (Cartesian space)



Trajectory planning (Cartesian space)



Trajectory planning (Cartesian space)



Trajectory planning (Cartesian space)
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Trajectory planning (Cartesian space)



Trajectory planning (Cartesian space)



Trajectory planning (Joint space)
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Trajectory planning (Joint space)
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Trajectory planning (Joint space)
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Trajectory planning (Joint space)



Trajectory planning (Cartesian space)



Trajectory planning (Cartesian space)



Trajectory planning (Cartesian space)



Trajectory planning (Joint space)



Trajectory planning (Joint space)



Trajectory planning (Cartesian space)



Trajectory planning (Cartesian space)



Trajectory planning

• The key idea of trajectory planning is to use some form of trj

representation to choose the proper trj profile (polynomial…)

• This process can be applied in both joint space and Cartesian space 

• Have more flexibility than sampling-base methods



Trajectory planning

• No optimality guaranteed

• Difficult to generalize to humanoids

• No dynamics is considered (The maximal acceleration is checked after 

planning)

• Other constraints such as collision avoidance are not considered. 

• Restrictive and not human-like

• Still not connected with the sensor and actuator (almost only geometry)



Today’s Agenda

• Drawback of Sampling-based approach (~5)

• Potential field method (~15)

• attractive, repulsive 

• Gradient descent algorithm (~15)

• vector field, velocity field, dynamic system

• Trajectory planning (~25)

• trajectory and path

• Parameter, joint space, cartesian space 

• Planning as optimization (~20)



Trajectory optimization



Trajectory optimization



Trajectory optimization



Trajectory optimization

• Optimization-based motion planning approaches, such as Nonlinear Programming

(NLP) and Mixed-Integer Programming (MIP), solve optimization problems, and find

solutions using gradient descent while satisfying constraints.

• For instance, CHOMP optimizes a cost functional using covariant gradient descent while

TrajOpt solves a sequential convex optimization and performs convex collision checking.

• Various tasks including navigation, grasping, manipulation, collision-avoidance,

running, cooking, and flying under various conditions.

• Local optimal (a general problem for nonlinear optimization)



Trajectory optimization



Trajectory optimization

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/slides/Lec10-motion-planning.pdf



Trajectory optimization
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Today’s Summary

• Drawback of Sampling-based approach (~5)

• Potential field method (~15)

• attractive, repulsive 

• Gradient descent algorithm (~10)

• vector field, velocity field, dynamic system

• Trajectory planning(~25)

• Parameter, joint space, cartesian space 

• Planning as optimization (~20)

• Parameter, joint space, cartesian space 



Goal for this course

• Design：soft hand design  x1

• Perception: vision, point cloud, tactile, force/torque x1

• Planning: sampling-based, optimization-based, learning-based x3

• Control: feedback, multi-modal x2

• Learning: imitation learning, RL x2

• Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)

• How to get a robot moving! 



Goal for this course

• Next course: course project kick-off

• Please download and play with pyBullet or any other 

robot simulator

• Choose one of the projects and find your group

• Make a detailed pipeline and the key milestones

• Please contact us directly if you have any questions


