Robotics
Miao Li

Fall 2023, Wuhan University
WeChat: 15527576906
Email: limiao712@gmail.com

2023-10-9

mailto:limiao712@gmail.com

Goal for this course

* Design: soft hand design x1

 Perception: vision, point cloud, tactile, force/torque x1

* Planning: sampling-based, optimization-based, learning-based x3

* Control: feedback, multi-modal x2
* Learning: imitation learning, RL x2
« Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)

 How to get a robot moving!

Today's Agenda

 What is planning? (~10)

 Motion planning in robotic application (~10)
« Self-driving, drone, robot arm, humanoids, medical robots, soft robots ...

 Formulation of robot motion planning
* Planning as searching (~25)

* Planning as sampling (~25)
« PRM, RRT, RRT*

What Is planning?

Q: How can I get there from here? U&&u/(WA
o //_\—
Plannlng o= High-level Functions \\/

e Partially understood

e Not fully localized 3 o O(/(S’ca{/@ J

'3

y #, ¢ Perception

" el g
— ® Situation awareness ~
'{""'. “‘
|

o Natural Language Understanding

' e Pattern Discovery

“‘ e Reasoning
- 7=
LS il 2 e Decision Making
, ‘ :
. . ¢ Planning

e [carning

Brain functions

Low-level Functions

e Fully understood Ry
e [Localized

— .

—_— &

Sight Hearing Smell Taste l'ouch

Steven M. LaValle

PLANNING
ALGORITHMS

What Is planning?

P=Supy .
_— — U U CTYUT SRR (N ——

= Ies
—)_ I '|I:—
) ==

E—
|
Mgm—
I

What IS planning?

© A @ £ & 4 x L‘/iws W Gas W EVcharging | @ Thingstodo aampgmnds

Best 12h 13 days
O o) [Wulum. Hubet, China J
Saved ’ ‘P‘
@ Q (Bclilng. China]

Recents @ Add destination

Leave now Options |

' 2
12
a Send directions to your phone
Wution via AT EELNRIGAS 11 hr 37 min
Fastest route now due to traffic 1,160 km
. conditions
Belpog A This route has 10fls
Details
8 vieSBEEEmELEGIand 1Mhr 42min
K I ANRIGAS 1167 km
B via SHERERARKIG 11 hr 54 min
1177 km
[=

Explore Beijing

O0006 '™ P —
o) uuu-emsmuomy Unitea Statas Terms Privacy mmmm 100 M)

';Eﬁﬁnﬁwﬁl& BT
m;wﬁ THENNBENAR. 50

20 w»s1oc0

What Is planning?

A plan is typically any diagram or list of steps with details of timing and

resources, used to achieve an objective to do something. It Is

commonly understood as a temporal set of intended actions through which

one expects to achieve a goal.

https://en.wikipedia.org/wiki/Plan

https://en.wikipedia.org/wiki/Diagram
https://en.wikipedia.org/wiki/Goal
https://en.wikipedia.org/wiki/Modal_logic
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Goal

— Environment P I an n I ng I n RObOtiCS

| R — -

Perception

Sensors
Sensory Data
1
Feature Extraction [+

+

I
I
I
|
I
I
I
I
I
I
' .
| Representation
I
I
I
I
I
I
I
I
1
I
I

Robotics — Learn the mapping
from perception to action

v
Learning
¥

Knowledge

End-effector

Motion Planning in Robotics

perception

action

perception

Robotics — Learn the mapping from perception to action

Self-driving

Drones

Science Robotics

AONT SWARM OF MICRU FLYING RODOTS IN THE WILD

? HESEARCH ARTICLE ALUTONCOMOL vENLE

Swarm of micro flying robots in the wild

|l +1 suthere

SCHNCE ROBOTICS

& mos vy

f ¥ in o % =

Robot arms

Bimanual manipulation

Humanoids

Motion Planning in Robotics

Humanoids

Motion Planning in Robotics

‘W

J'@ “ ‘
. Y
_‘.&

Optimus is now capable of self-calibrating its arms and legs

Tesla's Optimus Robot Sort Objects Autonomously
https://www.youtube.com/watch?v=0L5YNtDUQXU&ab_channel=CNETHighlights

Humanoids

Motion Planning in Robotics

Dog Pace

Mocap Data Reference Motion

Quadruped robot

In Robotics

Science Robotics PRI RS RS e

HOME > SOENCE ROOOTICS > VOL S NO, A7 > LEARNING QUADRUPEDAL LOCOMOTION OVER CHALLENGING TERRAIN

5 RESEARCH ARTICLE ANIMAL R0OBOTS f ¥y ino% o

Learning quadrupedal locomotion over challenging
terrain

. AND MARLS HUTTER €

Authurs ks & Afflations
SCIENCE ROBOTICS e J070 « Vet § saun 47 - DOL 101126/ sciobotice ahe SOGE

& 8236 W9 202 & "0

Quadruped robot

Medical robot

Dexterous manipulation

Soft robots

Today's Agenda

 What is planning? (~10)

 Motion planning in robotic application (~10)
« Self-driving, drone, robot arm, humanoids, medical robots, soft robots ...

 Formulation of robot motion planning

* Planning as searching (~15)

* Planning as sampling (~25)
« PRM, RRT, RRT*

Robot Motion Planning

» Motion planning is a term used in robotics for the process of breaking down a

movement task into discrete motions that satisfy movement

nd possibly optimize some aspect of the movement.

obot has to compute a collision-free path from a start
position (s) to a given goal position (G), amidst a collection of

obstacles.
— / a ing stat

Articulated Robot Rigid Robot

Robot Motion Planning

Structured environment

Waste box

e Inspection
'? Camera Robot
Waits until receiving a signal |
from the presence sensor | Piece
A 4
-
Stops the conveyer belt
\ l -
\ Presence
Ricosat Picks the defected piece senaes
pe J Conveyer :
y ‘ motor
belt
h 4 .
Deposits the defected piece in PROC main()
the waste box go_wait position; {Move to initial pesition
J WHILE Dinput (finish)=0 'walt end program signal
l [F' Dinput (defected piece)~1 THEN !Wait defected piece signal
e \ 5etDO activate_belt, 0; !Stop belt
Reactivates the movement of pick piece !Pick the defected piece
the conveyer belt ‘ SetDO activate belt,l; lActivate the belt
l 4 place plece !Place the defected piece
i 2 !Move to the inirt ositio
2 .gl?_[_\lv_n.t_position. | Move he inirial position
ENDIF
Returns to initial position ENDWHI LE
| TNDPRG
L)

Plan: Activity Diagram ABB RAPID Program

T W
/EW |

Try to find a path using the current set of cells

If no path found:

- Suleivide the MIXED cells and try again with the new set of
cells

Today's Agenda

 What is planning? (~10)

 Motion planning in robotic application (~10)
« Self-driving, drone, robot arm, humanoids, medical robots, soft robots ...

 Formulation of robot motion planning
* Planning as searching (~25)

* Planning as sampling (~25)
« PRM, RRT, RRT*

Discrete Planning

bl Unformed

* Breadth-First Search * Best-First

* Depth-First Search .« AX
 Brute-Force Search

https://medium.com/omarelgabrys-blog/path-finding-algorithms-f65a8902eb40

Demo: http://giao.github.io/PathFinding.js/visual/

Breadth-First Search

Level 1

Enqueue

. o
1
Dequeue I

Level 2

Level 3

Breadth-First Search

Breadth-First Search

l

2

Breadth-First Search

Breadth-First Search

BFS(graph, start_node, end_node):
frontier = new Queue()
frontier.enqueue(start_node)
explored = new Set()

while frontier 1is not empty:
current_node = frontier.dequeue()
if current_node in explored: continue
if current_node == end_node: return success

for neighbor in graph.get_neigbhors(current_node):
frontier.enqueue(neighbor)

explored.add(current_node)

https://medium.com/tebs-lab/breadth-first-search-and-depth-first-search-4310f3bf8416

Breadth-First Search

* Breadth-first Search (BFS)

Robot Clee|

@
e Ay

i } Queue
J s
Start ouT

Example from the slides: https:.//www.slideshare.net/AlaaKhamis/motion-planning

Breadth-First Search

* Breadth-first Search (BFS)

Robot Goal

-

a8
%]
Queue
: SE S IN
Start S ouT

Breadth-First Search

* Breadth-first Search (BFS)

Robot Goal

S =
O

Assume that E is the goal,
Path is: Start—> S>SE-E

= B m

Queue
NE 'E ﬁE S
\ 4

Start S S SE

© Z
S

Breadth-First Search

Breadth-first Search (BFS)

¢ High memory requirement.
¢ Exhaustive search as it will process every node.
¢ Doesn’t get stuck.

¢ Finds the shortest path (minimum number of steps).

Depth-First Search

Stack (LIFO)

/

Depth first search is dead simple. First, go to the specified start
node. Now, arbitrarily pick one of that node’s neighbors and go
there. If that node has neighbors, arbitrarily pick one of those and
go there unless we’ve already seen that node. And we just repeat
this process until one of two things happens. If reach the specified
end node we terminate the algorithm and report success. If we
reach a node with only neighbors we've already seen, or no
neighbors at all, we go back one step and try one of the neighbors

we didn’t try last time.

* Depth-first Search (DFS)

Robot Goal

e n
. !

DFS(graph, start_node, end_node):
frontier = new Stack()

! frontier.push(start_node)
OUT IN explored = new Set()
Stack while frontier is not empty:
| current_node = frontier.pop()

if current_node in explored: continue
if current_node == end_node: return success

for neighbor 1in graph.get_neigbhors(current_node):
frontier.push(neighbor)

explored.add(current_node)

Start | S

Depth-First Search

* Depth-first Search (DFS)

. . | Stack
U
O

S SE
- Start | S

Depth-First Search

* Depth-first Search (DFS)
Robot

S 1
@ 7
s =
o

Goal

-

SE S

.
%J o>

Start | S

Depth-First Search

* Depth-first Search (DFS)

RODOk God o The next node to be

9 . O é expanded would be NE

i 1 and its successors would
| be added to the stack and

this loop continues until

_the goal is found.
f
¢ Once the goal is found,

you can then trace
back through the tree to

: | obtain the path for the

robot to follow.

Brute-Force Search

X
AL D
@ ChatGPT - Bot L : 4» t:j',g?‘rabons
. m B Brute Force 8: 8% = 16777216 ~ 10
What is brute-force search? : 15 N queens (n = 4) 64: 4™ ~10""
@ chatGpT T
Brute-force search is a method of solving a problem by trying every] 1 = = ‘.
possible solution until the right one is found. It is also called "exhaustive 5 - :
search” or "generate and test" method. This method is not always efficient, —— - L
especially when the problem has a large solution space. But it is) [‘,’,' g —
guaranteed to find the correct solution if one exists. = N = = oo
:k W ‘k AOAOMN b b b
Tell me more 2 e WAL ASAAAASALAARALL
! — . L3
) A 48 infeasible solutions e i 64 infeasible
Can you give an example of a problem that can be solved using brute- 2 2 Pe— 7 .) F snlotians
force search? B = ll] M. 1
n N 4 [W
What are the advantages and disadvantages of using brute-force search? & = [|essEsEsEmsEnm = e
i : |\ = |
Are there any problems that cannot be solved using brute-force search? (4 P ree—— K3 F — (?) Pe——
] sE T " . am
— — ! — w p= '] E — = =7ot -] — f w
> Ask follow-up questions on Poe, a free app from Quora SN __ . | ﬁwj . ;ﬂ‘ - 'ﬂ
) By continuing you agree to create a Poe account, and to its Terms of Service 8 Pavacy Policy . ‘_Sll ') _‘:4_5 :] i 2 _'iJ F) |Gl . 1“4 L.B_ . "

Discrete Planning

Bl Unformed

* Breadth-First Search
* Depth-First Search

e Best-Firs
° A*

 Brute-Force Search

Qd O
0 ‘
Mause tle Sttty
ps://medium.com/omarelgagryg— 0 Zth—finding—algorithms—f a8902eb40

http://giao.github.io/PathFinding.js/visual/

Best-First Search

« Best-first
1. Workspace discretized into cells
2, Insert (X;,;,,V;,;) Into list OPEN

3. Find all 8-way neighbors to (x;,;,Yi,;) that have not been previously
visited and insert into OPEN

. Sort neighbors by minimum potential

-

. Form paths from neighbors to (X ;;,Viit)

S O

. Delete (x;;;,V:,;) from OPEN
7. (X Yine) = minPotential(OPEN)

o2

. GOTO 2 until (x;;,y:,;r)=goal (SUCCESS) or OPEN empty (FAILURE)

Best-First Search

() Local minimum
~ detected

() Beststep

i Obstacle

Best-First Search

) Local minimum
~ detected

. Best step

. Obstacle

Best-First Search

, Local minimum
 detected

() Beststep

- Obstacle

Best-First Search

’ Goal
Neighbor
‘ Visited

Local minimum
detected

Best-First Search

(") Local minimum
~ detected

k}") Best step

. Obstacle

Best-First Search

detected

Best-First Search

Local minimum
detected

Best-First Search

() Local minimum

" detected

() Beststep

i Obstacle

Best-First Search

() Local minimum
~ detected
() Beststep

i Obstacle

Best-First Search

 Best-first

¢ It is a kind or mixed depth and breadth first search.

¢ Adds the successors of a node to the expand list.

¢ All nodes on the list are sorted according to the heuristic
values.

¢ Expand most desirable unexpanded node.

¢ Special Case: A*.

https://en.wikipedia.org/wiki/Ax_search_algorithm

https://www.redblobgames.com/pathfinding/a-star/introduction.htm|

,QWGA
we/ic]\ﬁ O)N)
NN

Rt Fupt

Q

A*
(n) = (~ +ACAD
LA
eatol bk M‘i’ ”““‘i

estimated distance from the current node to the end node

Manhattan Distance

diy =

|z

x| + |y1 — y2

2 Ty &
0 \ \ —
5 - B
K /// /i

e

A(l\)

O L (Lo V=)

Q I)(Z’)/ P‘%W{
oF Pé{ﬁu‘ﬁ

Lo, D, protwt
| lted— lisk s

e

-—

j N F AW

—
(st e WS

i

- A(l\)

@FQ/AW% (Lo V=)

L
/

—

L
/

j N F AW

MW% (o =

—

L
/

j N F AW

MW% (o =

A* Implementation

class Node:
def __init_ (self, position, parent=None, cost=0):
self.position = position
self.parent = parent
self.cost = cost

def heuristic(node, goal):] ‘
x1, yl = node.position / O (ze k CW

x2, y2 = goal.position ¢

return abs(xl - x2) + abs(yl - y2) 'L -
def get_neighbors(node): S

X, y = node.position z/\Q M LH /\O .

neighbors = [] ‘_J/—‘

Add adjacent nodes (up, down, left, right)

for dx, dy in [(@, 1), (8, -1), (1, @), (-1, @)]:
new_x, new y = X + dx, y + dy
neighbors.append(Node((new_x, new_y), parent=node, cost=node.cost + 1))

return neighbors

https://saturncloud.io/blog/implementing-the-a-algorithm-in-python-a-stepbystep-guide/

A* Implementation

import heapq

def astar(start, goal):
open_list = []
closed_list = set()

heapq.heappush(open_list, (start.cost, start))

while open_list:

current_cost, current_node = heapq.heappop(open_list) Stal“t = NOdE((9_1 e))
if current_node == goal: goal = NOde((sj 5))

Goal reached, construct and return the path

path = []
while current_node:

path.append(current_node.position) pa.th - aStar‘(Stal“t, goal)

current_node = current_node.parent
return path[::-1] print(path)

closed_list.add(current_node)
for neighbor in get_neighbors(current_node):
if neighbor in closed_list:
continue

new_cost = current_node.cost + 1

if neighbor not in open_list:
heapq.heappush(open_list, (new_cost + heuristic(neighbor, goal), neighbor)) W

elif new_cost < neighbor.cost:
neighbor.cost = new_cost {2
neighbor.parent = current_node
~ ~——

A*

Advantages:

It is optimal search algorithm in terms of heuristics. (-F(I\) rj U\) /)' A(’\>

It is one of the best heuristic search techniques.

It is used to solve complex search problems.

There is no other optimal algorithm guaranteed to expand fewer nodes than A*.

Disadvantages:

« This algorithm is complete if the branching factor is finite and every action has fi%ost.

* The performance of A* search is dependant on accuracy of heuristic algorithm used to compute the function
h(n).

Today's Agenda

 What is planning? (~10)

 Motion planning in robotic application (~10)
« Self-driving, drone, robot arm, humanoids, medical robots, soft robots ...

 Formulation of robot motion planning
* Planning as searching (~25)

* Planning as sampling (~25)
« PRM, RRT, RRT*

Sampling

® Completely describing and optimally exploring is
too hard in high dimension space
® [t IS not necessary

® Limit ourselves to finding a “good” sampling

Sampling

Sampling

Sampling

Sampling

PRM

- | The resulting graph is a
probabilistic roadmap
(PRM)

PRM

R RT Rapidly Exploring Random Trees

Remarkably, we can find a solution by using
relatively few randomly sampled points.

RRT

RRT Algorithm (vaan Yoo step. n)

| (v mitialize(xaan)

2 for =/ ton do

3 Yrand = Sample()

4 Nacar= NCAN Xrana G)

5 Vaew™ SI€E{ Nyand, Xpear SIEP_S1Z€)

6 G.add node(xoew)

7 G.add_edge(¥oew, Yoear)

8 if Xnew™ Xgoal

C i

) success() New start
—J-C. Latombe. Robot Motion Planning. Kluwer. start

1991.

— S. Lavalle. Planning Algorithms. 2006.
http://msl.cs.uiuc.edu/planning/

—H. Choset et al., Principles of Robot Motion:
Theory, Algorithms, and Implementations. 2006.

—
ad
Ad

25

10

2r

10

-8

RRT

https://www.youtube.com/watch?v=gP6MRe_IHFo&ab_cha
nnel=JacksonBernatchez

Today's Agenda

 What is planning? (~10) </

« Motion planning in robotic application (~10) V
« Self-driving, drone, robot arm, humanoids, medical rol\o/ots, soft robots ...

 Formulation of robot motion planning -
* Planning as searching (~25) . ~
* Planning as sampling (~25) /

. PRM, RRT,

Summary

Ak

e The constraints from the robot itself are not w//,

7/

)

 The dimensionality (DOF, Task space)

« Robot kinematics a namics, hardware
* Heuristi ign,\Jearning.[optimization

* Time complexity, real-time applicati

——
—
o
- ———

Goal for this course

* Design: soft hand design x1

 Perception: vision, point cloud, tactile, force/torque x1

* Planning: sampling-based, optimization-based, learning-based x3

* Control: feedback, multi-modal x2
* Learning: imitation learning, RL x2
« Simulation tool (pybullet, matlab, OpenRAVE, Issac Nvidia, Gazebo)

 How to get a robot moving!

